DOI QR코드

DOI QR Code

식종원 및 유기물 농도 변화에 따른 평판형 외기환원전극 미생물 연료전지의 질소 제거

Nitrogen Removal in Flat-Panel Air-Cathode Microbial Fuel Cell according to Various Inoculum Sources and Organic Concentration

  • 박영현 (부산대학교 사회환경시스템공학과) ;
  • 유재철 (부산대학교 사회환경시스템공학과) ;
  • ;
  • 이태호 (부산대학교 사회환경시스템공학과)
  • Park, Younghyun (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Yu, Jaecheul (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Nguyen, Thi Hien (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Lee, Taeho (Department of Civil and Environmental Engineering, Pusan National University)
  • 투고 : 2016.10.24
  • 심사 : 2016.12.09
  • 발행 : 2016.12.31

초록

미생물연료전지(MFC)는 하 폐수내의 유기물로부터 전기를 생산할 수 있는 획기적인 기술이지만, 실용화를 위해서는 하 폐수 내의 질소를 제거할 수 있어야 한다. 본 연구에서는 두 개의 대면적 SEA (separator electrode assembly)로 구성된 평판형 외기환원전극 미생물연료전지(FA-MFC)를 이용하여 질산화 전배양의 유무와 식종원에 따른 총질소제거율을 평가하였다. 질산화 전배양 단계에서 FA-MFC의 질산화율은 식종원과는 무관하게 99% 이상을 나타냈다. 질산화 및 탈질 단계에서 300 mg-COD/L 이하의 낮은 유기물 농도에서는 전배양을 하지 않은 조건의 총질소제거율이 가장 높았다. 유기물 농도가 증가할수록 더 높은 총질소제거율을 나타냈으며, 유기물제거율은 모든 조건에서 95% 이상을 나타냈지만, 종속영양탈질에만 이용되지는 않은 것으로 판단된다. FA-MFC의 전기 발생량은 매우 낮았지만, 유기물과 질소를 동시에 제거할 수 있다는 장점이 있기 때문에 획기적인 하 폐수처리공법으로 발전시킬 수 있으리라 기대된다.

Although microbial fuel cell (MFC) can produce electricity from organics in wastewater, nitrogen removal is required for application of process for wastewater treatment plant. This study developed flat-panel air-cathode MFCs (FA-MFCs) comprised of two large separator electrode assemblies (SEAs) and evaluate total nitrogen removal according to three inoculum sources and pre-nitrification acclimation. The nitrification efficiencies were >99% regardless of inoculum sources under the phase for pre-nitrification acclimation. The total nitrogen removal efficiencies of FA-MFCs without pre-nitrification acclimation were the highest at the low organic conditions (<300 mg-COD/L) under the phase for nitrification and denitrification. The increase of organic concentration influenced the total nitrogen removal efficiency, positively. The organics were removed >95% but were not used for heterotrophic denitrification totally. This study suggests that application of FA-MFC system for wastewater treatment can allow the simultaneous removal of organic and nitrogen compounds, although this affects the low electricity production.

키워드

참고문헌

  1. Jung, S., "Practical implementation of microbial fuel cells for bioelectrochemical wastewater treatment," J. Korean Soc. Urban Envrion., 13(2), 93-100(2013).
  2. Logan, B. and Rabaey, K., "Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies," Sci., 337(6095), 686-690(2012). https://doi.org/10.1126/science.1217412
  3. Lefebvre, O., Uzabiaga, A., Chang, I. S., Kim, B. H. and Ng, H. Y., "Microbial fuel cells for energy self-sufficient domestic wastewater treatment - a review and discussion from energetic consideration," Appl. Microbiol. Biotechnol., 89(2), 259-270(2011). https://doi.org/10.1007/s00253-010-2881-z
  4. Kim, H., Kim, B. and Yu, J., "Power generation response to readily biodegradable COD in single-chamber microbial fuel cells," Bioresour. Technol., 186, 136-140(2015). https://doi.org/10.1016/j.biortech.2015.03.066
  5. Zhang, F., Ge, Z., Grimaud, J., Hurst, J. and He, Z., "Longterm performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility," Environ. Sci. Technol., 47(9), 4941-4948(2013). https://doi.org/10.1021/es400631r
  6. Yu, J., Seon, J., Park, Y., Cho, S. and Lee, T., "Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment," Bioresour. Technol., 117, 172-179 (2012). https://doi.org/10.1016/j.biortech.2012.04.078
  7. Chun, J., Yu, J., Park, Y., Seon, J., Cho, S. and Lee, T., "Acceleration of biological denitrification by using bioelectrochemical reactor," J. Environ. Sci., 21(8), 989-996(2012).
  8. Yan, H., Saito, T. and Regan, J. M., "Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode," Water Res., 46(7), 2215-2224 (2012). https://doi.org/10.1016/j.watres.2012.01.050
  9. Kim, J., Zuo, Y., Regan, J. M. and Logan, B. E., "Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater," Biotechnol. Bioeng., 99(5), 1120-1127 (2008). https://doi.org/10.1002/bit.21687
  10. Yan, H. and Regan, J. M., "Enhanced nitrogen removal in single-chamber microbial fuel cells with increased gas diffusion areas," Biotechnol. Bioeng., 110(3), 785-791(2013). https://doi.org/10.1002/bit.24769
  11. Cheng, S., Liu, H. and Logan, B. E., "Increased performance of single-chamber microbial fuel cells using an improved cathode structure," Electrochem. Commun., 8(3), 489-494 (2006). https://doi.org/10.1016/j.elecom.2006.01.010
  12. Yu, J., Park, Y. and Lee, T., "Effect of separator and inoculum type on electricity generation and microbial community in single-chamber microbial fuel cells," Bioprocess Biosyst. Eng., 37(4), 667-675(2014). https://doi.org/10.1007/s00449-013-1036-x
  13. Logan, B. E., Hamelers, B., Rozendal, R. A., Schrorder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. and Rabaey, K., "Microbial fuel cells: Methodology and technology," Environ. Sci. Technol., 40(17), 5181-5192(2006). https://doi.org/10.1021/es0605016
  14. Dosta, J., Fernandez, I., Vazquez-Padin, J. R., Mosquera- Corral, A., Campos, J. L., Mata-Alvarez, J. and Mendez, R., "Short- and long-term effects of temperature on the Anammox process," J. Hazard. Mater., 154(1-3), 688-693(2008). https://doi.org/10.1016/j.jhazmat.2007.10.082
  15. Jung, J., Kang, S., Chung, Y. and Ahn, D., "Factors affecting the activity of anammox bacteria during start up in the continuous culture reactor," Water Sci. Technol., 55(1), 459-468 (2007). https://doi.org/10.2166/wst.2007.023
  16. Jo, K., Park, Y., Cho, S. and Lee, T., "Variation of nitrogen removal efficiency and microbial communities depending on operating conditions of a CANON process," J. Korean Soc. Environ. Eng., 37(6), 332-339(2015). https://doi.org/10.4491/KSEE.2015.37.6.332
  17. Gao, C., Wang, A., Wu, W. M., Yin, Y. and Zhao, Y. G., "Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells," Bioresour. Technol., 167, 124-132(2014). https://doi.org/10.1016/j.biortech.2014.05.120
  18. Min, B., Kim, J. R., Oh, S., Regan, J. M. and Logan, B. E., "Electricity generation from swine wastewater using microbial fuel cells," Water Res., 39(20), 4961-4968(2005). https://doi.org/10.1016/j.watres.2005.09.039

피인용 문헌

  1. Effect of Electrode Configuration on the Substrate Degradation in Microbial Fuel Cells vol.39, pp.8, 2017, https://doi.org/10.4491/KSEE.2017.39.8.489
  2. Effect of COD and HRT Changes in Submerged Microbial Fuel Cells on Nitrogen Removal at the Level of Domestic Wastewater vol.40, pp.8, 2018, https://doi.org/10.4491/KSEE.2018.40.8.314