DOI QR코드

DOI QR Code

Analytical and Experimental Study of an Unstiffened Extended End-Plate Connection

반복하중을 받는 비보강 확장 단부판 접합부의 해석 및 실험적 연구

  • Kim, Hee Dong (Department of Architecture, Inha Technical College) ;
  • Yang, Jae Guen (Department of Architectural Engineering, Inha University) ;
  • Pae, Da Sol (Department of Architectural Engineering, Inha University)
  • Received : 2016.08.23
  • Accepted : 2016.10.28
  • Published : 2016.12.27

Abstract

Extended end-plate connections(EEPC) are a type of connection applied in Pre-Engineered Building structures comprising beam-column connections of steel structures or tapered members. Extended end-plate connections(EEPC) show different behavioral characteristics owing to the influence of plate thickness, gauge distance of high strength bolt, diameter of high strength bolt frame, and the number of high strength bolts. In the USA and Europe, extended end-plate connections(EEPC) are applied in beam-column connections of steel structures in various forms; however, these are not widely applied in structures in Korea.This can be attributed to the fact that the proposal of design strength types for extended end-plate connections(EEPC), proposal of connection specifications, evaluation of seismic performance, and are not being performed appropriately. Therefore, the purpose of this study is to provide basic data for the domestic application of Unstiffened extended endplate connections. To realize this, nonlinear finite element analysis was conducted on a 12-mm thick Unstiffened extended endplate connections.

확장단부판 접합부는 강구조물의 보-기둥 접합부 혹은 변단면 부재로 구성된 PEB 구조시스템에 적용되는 접합부의 한 형태이다. 확장단부판 접합부는 접합부를 구성하는 단부판의 두께, 고장력볼트의 게이지 거리, 고장력볼트 축부의 직경, 고장력볼트의 개수 등의 영향으로 상이한 거동특성을 나타낸다. 확장단부판 접합부는 미국 및 유럽 등지에서는 다양한 형태로 강구조물의 기둥-보 접합부에 적용되고 있으나 우리나라에서는 널리 적용되고 있지 않다. 이러한 이유로는 확장단부판 접합부에 대한 설계강도식 제안, 접합부상세 제안, 내진성능 평가, 제작 및 시공지침서 개발 등이 적절히 이루어지지 못하고 있기 때문이다. 따라서 이 연구는 비보강 확장단부판 접합부의 국내 적용을 위한 기초자료를 제공하기 위하여 진행하였다. 이를 위하여 두께 12mm의 비보강 확장단부판에 대한 비선형 유한요소해석 및 실험을 수행하였다.

Keywords

References

  1. Kaehler, R.C., White, D.W., and Kim, Y.D. (2011) Frame Design Using Web-Tapered Members AISC Design Guide 25, American Institute of Steel Construction, Chicago, IL.
  2. Murray, T.M. (1990) Extended End-Plate Moment Connections AISC Design Guide 4, American Institute of Steel Construction, Chicago, IL.
  3. Thomas Murray and Lee Shoemaker (2010) Flush and Extended Multiple-Row Moment End-Plate Connections, Steel Design Guide 16., American Institute of Steel Construction, Chicago, IL.
  4. ECCS CECM EKS (1992) Design of Composite Joints for Buildings 109, ECCS.
  5. The British Constructional Steelwork Association and The Steel Construction Institute (1995) Joints in Steel Construction, Moment Connections. BCSA/SCI Publication P207. London, Ascot, SCI.
  6. 대한건축학회(2009) 건축구조기준(KBC 2009), 제7장 강구조, 기문당. Architectural Institute of Korea (2009) Korea Building Codes, AIK (in Korean).
  7. AISC (2010) Load and Resistance Factor Design Specification for Structural Steel Buildings, 14th Ed., American Institute of Steel Construction, Chicago, IL.
  8. Srouji, R., Kukreti, A.R., and Murray, T.M. (1983) Yield-Line Analysis of End-Plate Connections with Bolt Force Predictions, Research Report FSEL/MBMA 83-05, Fears Structural Engineering Laboratory, University of Oklahoma, Norman, OK.
  9. Kennedy, N.A., Vinnakota, S., and Sherbourne, A.N. (1981) The Split-Tee Analogy in Bolted Splices and Beam-Column Connections, Proceedings of the International Conference on Joints in Structural Steelwork, pp.2138-2157.
  10. FEMA (2000) Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, Program to Reduce the Earathquake Hazards of Steel Moment Frame Structures, FEMA 350, Fedral Emergency Management Agency, Washington, D.C.
  11. Murray, T.M. and Shoemaker, W.L. (2002) Flush and Extended Multiple-Row Moment End-Plate Connections, AISC Design Guide No.16, American Institute of Steel Construction, Chicago, IL.
  12. Mazzolani, F.M. and Piluso, V. (1996) Theory and Design of Seismic Resistant Steel Frames, E&FN SPON, pp.254-260.
  13. Richard et al. (1988) Derived moment-rotation curve for double-framing angles, Comput & Struct, Elsevier Science Ltd., Vol.30, No.3, pp.485-494. https://doi.org/10.1016/0045-7949(88)90281-7
  14. 김희동, 양재근, 이재윤, 이형동(2014) 상.하부 T-stub 접합부의 초기회전강성 평가, 한국강구조학회논문집, 한국강구조학회, 제26권, 제2호, pp.133-142. Kim, H.D., Yang, J.G., Lee, J.Y., and Lee, H.D. (2014) Evaluation of the Initial Rotational Stiffness of a Double Split Tee Connection, Journal of Korean Society of Steel Construction, KSSC, Vol.26, No.2, pp.133-142 (in Korean).
  15. Hendrick, D., Kukreti, A.R., and Murray, T.M. (1984) Analytical and Experimental Investigation of Stiffened Flush End-Plate Connections with Four Bolts at the Tension Flange. University of Oklahoma, Norman.
  16. Meng, Ronald L. (2006) Design of Moment End-Plate Connections for Seismic Loading, Virginia Tech.
  17. 양재근, 백민창, 이재윤, 이형동(2014) SMA 강봉으로 체결된 T-stub의 에너지 소산능력, 한국강구조학회논문집, 한국강구조학회, 제26권, 제3호, pp.231-240. Yang, J.G., Baek, M.C., Lee, J.Y., and Lee, H.D. (2012) Energy Dissipation Capacity of the T-stub Fastened by SMA bars, Journal of Korean Society of Steel Construction, KSSC, Vol.26, No.3, pp.231-240 (in Korean).
  18. 양재근, 백민창(2013) 고력볼트로 체결된 T-stub의 지레작용력 및 부재 접촉력 예측모델, 한국강구조학회논문집, 한국강구조학회, 제25권, 제4호, pp.409-419. Yang, J.G. and Baek, M.C. (2013) Prediction Models for the Prying Action Force and Contact Force of a T-stub Fastened by High-Strength Bolts, Journal of Korean Society of Steel Construction, KSSC, Vol.25, No.4, pp.409-419 (in Korean).