References
- Rosvall MD, Fields HW, Ziuchkovski J, Rosenstiel SF, Johnston WM. Attractiveness, acceptability, and value of orthodontic appliances. Am J Orthod Dentofacial Orthop 2009;135:276.e1-12.
- Fujiyama K, Honjo T, Suzuki M, Matsuoka S, Deguchi T. Analysis of pain level in cases treated with Invisalign aligner: comparison with fixed edgewise appliance therapy. Prog Orthod 2014;15:64. https://doi.org/10.1186/s40510-014-0064-7
-
Schaefer I, Braumann B. Halitosis, oral health and quality of life during treatment with Invisalign(
$^{(R)}$ ) and the effect of a low-dose chlorhexidine solution. J Orofac Orthop 2010;71:430-41. https://doi.org/10.1007/s00056-010-1040-6 - Harnick DJ. Using clear aligner therapy to correct malocclusion with crowding and an open bite. Gen Dent 2012;60:218-23.
- Frongia G, Castroflorio T. Correction of severe tooth rotations using clear aligners: a case report. Aust Orthod J 2012;28:245-9.
- Giancotti A, Germano F, Muzzi F, Greco M. A miniscrew-supported intrusion auxiliary for open-bite treatment with Invisalign. J Clin Orthod 2014;48:348-58.
- Kassas W, Al-Jewair T, Preston CB, Tabbaa S. Assessment of invisalign treatment outcomes using the ABO model grading system. J World Fed Orthod 2013;2:e61-4. https://doi.org/10.1016/j.ejwf.2013.03.003
- Casko JS, Vaden JL, Kokich VG, Damone J, James RD, Cangialosi TJ, et al. Objective grading system for dental casts and panoramic radiographs. American Board of Orthodontics. Am J Orthod Dentofacial Orthop 1998;114:589-99. https://doi.org/10.1016/S0889-5406(98)70179-9
- Rossini G, Parrini S, Castroflorio T, Deregibus A, Debernardi CL. Efficacy of clear aligners in controlling orthodontic tooth movement: a systematic review. Angle Orthod 2015;85:881-9. https://doi.org/10.2319/061614-436.1
- Sheridan JJ. The readers' corner. 2. What percentage of your patients are being treated with Invisalign appliances? J Clin Orthod 2004;38:544-5.
- Kohda N, Iijima M, Muguruma T, Brantley WA, Ahluwalia KS, Mizoguchi I. Effects of mechanical properties of thermoplastic materials on the initial force of thermoplastic appliances. Angle Orthod 2013;83:476-83. https://doi.org/10.2319/052512-432.1
- Fang D, Zhang N, Chen H, Bai Y. Dynamic stress relaxation of orthodontic thermoplastic materials in a simulated oral environment. Dent Mater J 2013;32:946-51. https://doi.org/10.4012/dmj.2013-131
- Rues S, Panchaphongsaphak B, Gieschke P, Paul O, Lapatki BG. An analysis of the measurement principle of smart brackets for 3D force and moment monitoring in orthodontics. J Biomech 2011;44:1892-900. https://doi.org/10.1016/j.jbiomech.2011.04.029
- Hahn W, Dathe H, Fialka-Fricke J, Fricke-Zech S, Zapf A, Kubein-Meesenburg D, et al. Influence of thermoplastic appliance thickness on the magnitude of force delivered to a maxillary central incisor during tipping. Am J Orthod Dentofacial Orthop 2009;136:12.e1-7.
- Hahn W, Engelke B, Jung K, Dathe H, Fialka-Fricke J, Kubein-Meesenburg D, et al. Initial forces and moments delivered by removable thermoplastic appliances during rotation of an upper central incisor. Angle Orthod 2010;80:239-46. https://doi.org/10.2319/033009-181.1
- Hahn W, Fialka-Fricke J, Dathe H, Fricke-Zech S, Zapf A, Gruber R, et al. Initial forces generated by three types of thermoplastic appliances on an upper central incisor during tipping. Eur J Orthod 2009;31:625-31. https://doi.org/10.1093/ejo/cjp047
- Ren CC, Bai YX, Wang ZY, Zhang M. [Establishment of the micro-stress sensor measurement system for invisible aligner technique]. Zhonghua Kou Qiang Yi Xue Za Zhi 2011;46:600-3. Chinese.
- Tian K, Wang ZY, Zhang M, Liu LT. Design, fabrication, and calibration of a piezoresistive stress sensor on SOI wafers for electronic packaging applications. IEEE Trans Comp Packag Tech 2009;32:513-20. https://doi.org/10.1109/TCAPT.2008.2006854
- Shi Y, Ren CC, Hao W, Zhang M, Bai YX, Wang ZY, et al. An ultra-thin piezoresistive stress sensor for measurement of tooth orthodontic force in Invisible aligners. IEEE Sensors J 2012;12:1090-7. https://doi.org/10.1109/JSEN.2011.2166065
- Lapatki BG, Bartholomeyczik J, Ruther P, Jonas IE, Paul O. Smart bracket for multi-dimensional force and moment measurement. J Dent Res 2007;86:73-8. https://doi.org/10.1177/154405910708600112
- Lapatki BG, Paul O. Smart brackets for 3D-force-moment measurements in orthodontic research and therapy - developmental status and prospects. J Orofac Orthop 2007;68:377-96. https://doi.org/10.1007/s00056-007-0728-8
- Boyd RL, Miller RJ, Vlaskalic V. The Invisalign system in adult orthodontics: mild crowding and space closure case. J Clin Orthod 2000;34:203-12.
- Sheridan JJ, Ledoux W, McMinn R. Essix appliance: minor tooth movement with divots and windows. J Clin Orthod 1994;28:659-63.
- Barbagallo LJ, Shen G, Jones AS, Swain MV, Petocz P, Darendeliler MA. A novel pressure film approach for determining the force imparted by clear removable thermoplastic appliances. Ann Biomed Eng 2008;36:335-41. https://doi.org/10.1007/s10439-007-9424-5
- Proffit WR, Fields HW. Contemporary orthodontics. 3rd ed. St. Louis: Mosby; 2000. p. 341-58.
- Kusy RP. Orthodontic biomaterials: from the past to the present. Angle Orthod 2002;72:501-12.
- Eliades T, Bourauel C. Intraoral aging of orthodontic materials: the picture we miss and its clinical relevance. Am J Orthod Dentofacial Orthop 2005;127:403-12. https://doi.org/10.1016/j.ajodo.2004.09.015
- Ralph WJ. Tensile behaviour of the periodontal ligament. J Periodontal Res 1982;17:423-6. https://doi.org/10.1111/j.1600-0765.1982.tb01172.x
Cited by
- Mechanical load exerted by PET-G aligners during mesial and distal derotation of a mandibular canine : An in vitro study vol.78, pp.5, 2017, https://doi.org/10.1007/s00056-017-0090-4
- Force changes associated with different intrusion strategies for deep-bite correction by clear aligners vol.88, pp.6, 2016, https://doi.org/10.2319/121717-864.1
- Experimental Study of the Pressures and Points of Application of the Forces Exerted between Aligner and Tooth vol.9, pp.7, 2016, https://doi.org/10.3390/nano9071010
- Forces and moments generated by aligner‐type appliances for orthodontic tooth movement: A systematic review and meta‐analysis vol.22, pp.4, 2019, https://doi.org/10.1111/ocr.12333
- ATR-FTIR Analysis and One-Week Stress Relaxation of Four Orthodontic Aligner Materials vol.13, pp.8, 2016, https://doi.org/10.3390/ma13081868
- Influence of constant strain on the elasticity of thermoplastic orthodontic materials vol.39, pp.3, 2020, https://doi.org/10.4012/dmj.2019-104
- Optimal Position of Attachment for Removable Thermoplastic Aligner on the Lower Canine Using Finite Element Analysis vol.13, pp.15, 2020, https://doi.org/10.3390/ma13153369
- Orthodontic Aligner Incorporating Eucommia ulmoides Exerts Low Continuous Force: In Vitro Study vol.13, pp.18, 2016, https://doi.org/10.3390/ma13184085
- Force changes associated with differential activation of en-masse retraction and/or intrusion with clear aligners vol.51, pp.1, 2016, https://doi.org/10.4041/kjod.2021.51.1.32
- Dynamic measurement of orthodontic force using a tooth movement simulation system based on a wax model vol.29, pp.3, 2016, https://doi.org/10.3233/thc-202451
- The force effects of two types of polyethylene terephthalate glyc-olmodified clear aligners immersed in artificial saliva vol.11, pp.1, 2016, https://doi.org/10.1038/s41598-021-89425-8
- The optimal orthodontic displacement of clear aligner for mild, moderate and severe periodontal conditions: an in vitro study in a periodontally compromised individual using the finite element model vol.21, pp.1, 2021, https://doi.org/10.1186/s12903-021-01474-7