Acknowledgement
Supported by : National Science Council of Taiwan
References
- Barros, R. and Choi, W. (2013), "On regularizing the strongly nonlinear model for two-dimensional internal waves", Physica D, 264, 27-34. https://doi.org/10.1016/j.physd.2013.08.010
- Camassa, R. and Choi, W. (1999), "Fully nonlinear internal waves in a two-fluid system", J. Fluid Mech., 396, 1-36. https://doi.org/10.1017/S0022112099005820
- Chen, Y. and Liu, P.L.F. (1995), "Modified Boussinesq equations and associated parabolic models for water wave propagation", J. Fluid Mech., 288, 351-381. https://doi.org/10.1017/S0022112095001170
- Cifuentes, C., Kim, S., Kim, M.H. and Park, W.S. (2015), "Numerical simulation of the coupled dynamic response of a submerged floating tunnel with mooring lines in regular wave", Ocean Syst. Eng., 5(2), 109-123. https://doi.org/10.12989/ose.2015.5.2.109
- Debsarma, S., Das, K.P. and Kirby, J.T. (2010), "Fully nonlinear higher-order model equations for long internal waves in a two-fluid system", J. Fluid Mech., 654, 281-303. https://doi.org/10.1017/S0022112010000601
- Dong, G.H., Ma, Y.X., Zhang, W. and Ma, X.Z. (2012), "Laboratory study on the modulation evolution of nonlinear wave trains", Ocean Syst. Eng., 2(3), 189-203. https://doi.org/10.12989/ose.2012.2.3.189
-
Gobbi, M.F., Kirby, J.T. and Wei, G. (2000), "A fully nonlinear Boussinesq model for surface waves-Part 2. extension to
$O(kh)^4$ ", J. Fluid Mech., 405, 181-210. https://doi.org/10.1017/S0022112099007247 - Lamb, H. (1932), Hydrodynamics, Cambridge Univ. Press, New York, USA.
- Liu, C.M., Lin, M.C. and Kong, C.H. (2008), "Essential properties of Boussinesq equations for internal and surface waves in a two-fluid system", Ocean Eng., 35, 230-246. https://doi.org/10.1016/j.oceaneng.2007.08.006
- Liu, P.L.F. and Wang, X. (2012), "A multi-layer model for nonlinear internal wave propagation in shallow water", J. Fluid Mech., 695, 341-365. https://doi.org/10.1017/jfm.2012.24
- Madsen, P.A. and Schaffer, H.A. (1998), "Higher-order Boussinesq-type equations for surface gravity waves: derivation and analysis", Philos. T. R. Soc. A, 356, 3123-3184. https://doi.org/10.1098/rsta.1998.0309
- McDougall, T.J., Greatbatch, R.J. and Lu, Y. (2002), "On conservation equations in oceanography: How accurate are Boussinesq ocean models?", J. Phys. Oceanog., 32, 1574-584. https://doi.org/10.1175/1520-0485(2002)032<1574:OCEIOH>2.0.CO;2
- Myrhaug, D. and Org, M.C. (2012), "Scour around spherical bodies due to long-crested and short-crested nonlinear random waves", Ocean Syst. Eng., 2(4), 257-269. https://doi.org/10.12989/ose.2012.2.4.257
- Nguyen, H.Y. and Dias, F. (2008), "A Boussinesq system for two-way propagation of interfacial waves", Physica D, 237, 2365-2389. https://doi.org/10.1016/j.physd.2008.02.020
- Nwogu, O. (1993), "Alternative form of Boussinesq equations for nearshore wave propagation", J. Wtrwy. Port Coast Ocean Engng. ASCE, 119, 618-638. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618)
- Osborne, A.R. and Burch, T.L. (1980), "Internal solitons in the Andaman Sea", Science, 208, 451-460. https://doi.org/10.1126/science.208.4443.451
- Shi, S., Kurup, N., Halkyard, J. and Jiang, L. (2013), "A study of internal wave influence on OTEC systems", Ocean Syst. Eng., 3(4), 309-325. https://doi.org/10.12989/ose.2013.3.4.309
- Wei, G., Kirby, J.T., Grilli, S.T. and Subramanya, R. (1995), "A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear, unsteady waves", J. Fluid Mech., 294, 71-92. https://doi.org/10.1017/S0022112095002813
Cited by
- Effect of Interfacial Tension on Internal Waves Based on Boussinesq Equations in Two-Layer Fluids vol.35, pp.2, 2016, https://doi.org/10.2112/jcoastres-d-17-00186.1