DOI QR코드

DOI QR Code

Non-simple magnetothermoelastic solid cylinder with variable thermal conductivity due to harmonically varying heat

  • Zenkour, Ashraf M. (Department of Mathematics, Faculty of Science, King Abdulaziz University) ;
  • Abouelregal, Ahmed E. (Department of Mathematics, Faculty of Science, Mansoura University)
  • Received : 2014.07.18
  • Accepted : 2015.12.08
  • Published : 2016.03.25

Abstract

The model of two-temperature magneto-thermoelasticity for a non-simple variable-thermal-conductivity infinitely-long solid cylinder is established. The present cylinder is made of an isotropic homogeneous thermoelastic material and its bounding plane is traction-free and subjected to a time-dependent temperature. An exact solution is firstly obtained in Laplace transform space to obtain the displacement, incremental temperature, and thermal stresses. The inversion of Laplace transforms has been carried out numerically since the response is of more interest in the transient state. A detailed analysis of the effects of phase-lags, an angular frequency of thermal vibration and the variability of thermal conductivity parameter on the field quantities is presented.

Keywords

References

  1. Abbas, I.A. and Zenkour, A.M. (2013), "LS model on electro-magneto-thermo-elastic response of an infinite functionally graded cylinder", Compos. Struct., 96, 89-96. https://doi.org/10.1016/j.compstruct.2012.08.046
  2. Biot, M. (1956), "Thermoelasticity and irreversible thermo-dynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351
  3. Carroll, M.M. (1969), "Plane waves in non-simple elastic solids", Int. J. Solid. Struct., 5(2), 109-116. https://doi.org/10.1016/0020-7683(69)90024-9
  4. Chen, P.J., Gurtin, M.E. and Willams, W.O. (1969), "On the thermodynamics of non-simple Elastic material with two temperatures", Zeitschrift fur Angew Mathematik und Physik, 20(1), 107-112. https://doi.org/10.1007/BF01591120
  5. Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", Zeitschrift fur Angew Mathematik und Physik, 19(4), 614-627. https://doi.org/10.1007/BF01594969
  6. Ciarletta, M. (1996), "Thermoelasticity of nonsimple materials with thermal relaxation", J. Therm. Stress., 19(8), 731-748. https://doi.org/10.1080/01495739608946204
  7. Das, P. and Kanoria, M. (2012), "Two-temperature magneto-thermo-elasticity response in a perfectly conducting medium based on GN III model", Int. J. Pure Appl. Math., 81(2), 199-229.
  8. Dhar, A.K. (1985), "Mechanical shock problem of coupled thermoelasticity in a non-simple elastic material", Indian J. pure appl. Math., 16(2), 174-178.
  9. Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2(1), 1-7. https://doi.org/10.1007/BF00045689
  10. Green, A.E. and Rivlin, R.S. (1964), "Simple force and stress multipoles", Arch Ration. Mech. Anal., 16(5), 325-353. https://doi.org/10.1007/BF00281725
  11. Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of Laplace transform", J. Comp. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
  12. Lesana, D. (1983), "Thermoelasticity of nonsimple materials", J. Therm. Stress., 6(2-4), 167-188. https://doi.org/10.1080/01495738308942176
  13. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
  14. Lotfy, Kh. (2014), "Two temperature generalized magneto-thermoelastic interactions in an elastic medium under three theories", Appl. Math. Comput., 227, 871-888.
  15. Nowinski, J.L. (1978), Theory of Thermoelasticity with Applications, Sijthoff & Noordhoff Int., Publishing Comp., Netherlands.
  16. Prasad, R., Kumar, R. and Mukhopadhyay, S. (2010), "Propagation of harmonic plane waves under thermoelasticity with dual-phase-lags", Int. J. Eng. Sci., 48(12), 2028-2043. https://doi.org/10.1016/j.ijengsci.2010.04.011
  17. Quintanilla, R. (2004), "On existence, structural stability, convergence and spatial behavior in thermoelastic with two temperature", Acta Mech., 168(1-2), 161-173.
  18. Tzou, D. (1995), "A unified field approach for heat conduction from macro-to micro-scales", J. Heat Transfer, 117(1), 8-16. https://doi.org/10.1115/1.2822329
  19. Warren, W.E. and Chen, P.J. (1973), "Wave propagation in the two temperature theory of thermoelasticity", Acta Mech., 16(1-2), 21-23. https://doi.org/10.1007/BF01177123
  20. Wozniak, C. (1967), "Thermoelasticity of non-simple orinted materials", Int. J. Eng. Sci., 5(8), 605-612. https://doi.org/10.1016/0020-7225(67)90059-6
  21. Quintanilla, R. (2003), "Thermoelasticity without energy dissipation of nonsimple materials", ZAMM-J. Appl. Math. Mech./Zeitschrift fur Angewandte Mathematik und Mechanik, 83(3), 172-180. https://doi.org/10.1002/zamm.200310017
  22. Zenkour, A.M. and Abbas, I.A. (2014), "Magneto-thermoelastic response of an infinite functionally graded cylinder using the finite element method", J. Vib. Control, 20, 1907-1919. https://doi.org/10.1177/1077546313480541
  23. Zenkour, A.M. and Abbas I.A. (2015), "Electro-magneto-thermo-elastic response of infinite functionally graded cylinders without energy dissipation", J. Magnet. Magnet. Mater., 395, 123-129. https://doi.org/10.1016/j.jmmm.2015.07.038
  24. Zenkour, A.M. and Abouelregal, A.E. (2014a), "Nonlocal thermoelastic vibrations for variable thermal conductivity nanobeams due to harmonically varying heat", J. Vib., 16(8), 3665-3678.
  25. Zenkour, A.M. and Abouelregal, A.E. (2014b), "The effect of two temperatures on a FG nanobeam induced by a sinusoidal pulse heating", Struct. Eng. Mech., 51(2), 199-214. https://doi.org/10.12989/sem.2014.51.2.199
  26. Zenkour, A.M., Mashat, D.S. and Abouelregal, A.E. (2013), "The effect of dual-phase-lag model on reflection of thermoelastic waves in a solid half space with variable material properties", Acta Mechanica Solida Sinica, 26(6), 659-670. https://doi.org/10.1016/S0894-9166(14)60009-4
  27. Zenkour, A.M. (2014), "On the magneto-thermo-elastic responses of FG annular sandwich disks", Int. J. Eng. Sci., 75, 54-66. https://doi.org/10.1016/j.ijengsci.2013.11.001

Cited by

  1. Thermoelastic Interactions in a Rotating Infinite Orthotropic Elastic Body with a Cylindrical Hole and Variable Thermal Conductivity vol.64, pp.4, 2017, https://doi.org/10.1515/meceng-2017-0028
  2. Thermoviscoelastic orthotropic solid cylinder with variable thermal conductivity subjected to temperature pulse heating vol.13, pp.2, 2016, https://doi.org/10.12989/eas.2017.13.2.201
  3. Generalized Thermoelasticity Theories for Axisymmetric Hollow Cylinders Under Thermal Shock with Variable Thermal Conductivity vol.6, pp.3, 2016, https://doi.org/10.1142/s2251237318500065
  4. Hygrothermoelastic response in the bending analysis of elliptic plate due to hygrothermal loading vol.43, pp.3, 2020, https://doi.org/10.1080/01495739.2019.1711477