DOI QR코드

DOI QR Code

파밤나방과 배추좀나방의 고온 감수성 차이와 연중 발생 변이

Differential Susceptibility to High Temperature and Variation of Seasonal Occurrence between Spodoptera exigua and Plutella xylostella

  • Kim, Minhyun (Department of Plant Medicals, Andong National University) ;
  • Lee, Seunghee (Department of Plant Medicals, Andong National University) ;
  • Kim, Yonggyun (Department of Plant Medicals, Andong National University)
  • 투고 : 2015.11.24
  • 심사 : 2016.02.01
  • 발행 : 2016.03.01

초록

기후변화는 국내 해충상의 변화에 영향을 주는 주요 요인 가운데 하나로 알려지고 있다. 특히 지구 온난화 모델에 따라 남방계 곤충의 서식지 확대가 예상되고 있다. 휴면 기작을 가지고 있지 않은 파밤나방(Spodoptera exigua)과 배추좀나방(Plutella xylostella)은 시설재배지를 중심으로 국내에서 월동이 가능한 것으로 알려지고 있다. 그러나 두 해충은 계절적 발생 양상에서 뚜렷한 차이를 보여주었다. 배추좀나방은 이른 봄철과 가을기간에 발생하고 여름 기간 중에는 발생하지 않았다. 반면에 파밤나방은 늦은 봄철에 나타나기 시작해 가을까지 지속적으로 발생하였다. 본 연구는 이러한 두 남방계 곤충이 계절적 발생 차이를 보이는 것이 이들이 갖는 고온에 대한 감수성 차이에 기인한 것으로 가정하였다. 이 가설을 증명하기 두 곤충의 내열성을 비교 분석하였다. 동일한 열처리($42^{\circ}C$)에서 배추좀나방 유충은 40 분 노출에 100% 사망률을 보인 반면, 파밤나방은 대부분의 유충이 80 분의 노출에서도 생존하였다. 이러한 내열성은 두 곤충 모두 이들의 발육시기에 따라 상이했다. 배추좀나방은 4령 유충과 성충이 가장 높은 내열성을 보인 반면, 파밤나방은 1령 유충에서 가장 높게 나타냈다. 두 곤충 모두는 $37^{\circ}C$에서 30 분간 전 처리 후 고온에 노출시키면 생존율이 뚜렷하게 증가했다. 이러한 내열성유기는 두 곤충 모두 혈림프의 글리세롤 함량 증가와 관련성을 보였다. 또한 파밤나방의 경우는 열충격단백질의 발현도 증가하였다. 따라서 이상의 결과는 여름기간 배추좀나방의 발생이 없는 것은 이 곤충의 고온에 대한 높은 감수성에 기인된 것으로 보이고, 반면에 파밤나방은 비교적 높은 내열성을 보유하여 여름 기간에도 발생을 지속시킨 것으로 해석되었다.

Climate change has been regarded as one of main factors to change Korean insect pest fauna. Especially, a global warming model predicts to expand habitat for insect pests originated from tropical or subtropical regions. Two insect pests, the beet armyworm (Spodoptera exigua) and the diamondback moth (Plutella xylostella), are known to overwinter in some greenhouse conditions without diapause induction in Korea. There was a clear difference between these two insects in seasonal occurrence. P. xylostella occurred only at early spring and fall seasons, but did not occur during summer. In contrast, S. exigua maintained their occurrence from late spring to fall seasons. This study set up a hypothesis that the difference in the seasonal occurrence may be resulted from variation in susceptibility to high temperature. To test the hypothesis, heat tolerance was compared between these two insects. Exposure to $42^{\circ}C$ for 40 min killed 100% individuals of P. xylostella larvae. However, most larvae of S. exigua survived in response to $42^{\circ}C$ even for 80 min. Heat tolerance varied among developmental stages in both insects. Highest tolerant stages were $4^{th}$ instar larvae and adults for P. xylostella, but $1^{st}$ instar larvae for S. exigua. Pre-exposure to $37^{\circ}C$ for 30 min significantly increased heat tolerance in both insects. Induction of heat tolerance accompanied with significant increase of glycerol contents in the hemolymph in both insects and up-regulation of three heat shock protein expressions in S. exigua. These results suggest that the differential susceptibility to high temperature explains the disappearance of P. xylostella during summer, at which S. exigua maintains its occurrence.

키워드

참고문헌

  1. Bahar, M.H., Hegedus, D., Soroka, J., Coutu, C., Bekkaoui, D., Dosdall, L., 2013. Survival and Hsp70 gene expression in Plutella xylostella and its larval parasitoid Diadegma insulare varied between slowly ramping and abrupt extreme temperature regimes. PLoS ONE 8, e73901. https://doi.org/10.1371/journal.pone.0073901
  2. Chang, X.Q., Ma, C.S., Zhang, S., Lu, L., 2012. Thermal tolerance of diamondback moth Plutella xylostella. Ying Yong Sheng Tai Xue Bao 23, 772-778.
  3. Feng, H.Q., Wu, K.M., Cheng, D.F., Guo, Y.Y., 2003. Radar observations of the autumn migration of the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae) and other moths in northern China. Bull. Entomol. Res. 93, 115-124.
  4. Fey, R.E., Carranza, R.L., 1973. Cotton pests: overwintering of three lepidopterous species in Arizona. J. Econ. Entomol. 66, 657-659. https://doi.org/10.1093/jee/66.3.657
  5. Goh, H.G., Choi, J.S., Eom, K.B., Choi, K.M., Kim, J.W., 1993. Seasonal fluctuation of beet armyworm, Spodoptera exigua (Hübner), adult and larva. Kor. J. Appl. Entomol. 32, 389-394.
  6. Goh, H.G., Lee, S.G., Lee, B.P., Choi, K.M., Kim, H., 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua. Kor. J. Appl. Entomol. 29, 180-183.
  7. Goh, H.G., Park, J.D., Choi, Y.M., Choi, K.M., Park, I.S., 1991. The host plants of beet armyworm, Spodoptera exigua (Hübner), (Lepidoptera: Noctuidae) and its occurrence. Kor. J. Appl. Entomol. 30, 111-116.
  8. Jo, H.M., Kim, Y., 2001. Relationship between cold hardiness and diapause in the smaller fruit tortrix, Adoxophyes orana (Fischer von Roslerstamm). J. Asia Pac. Entomol. 4, 1-9. https://doi.org/10.1016/S1226-8615(08)60094-1
  9. Jung, M.P., Park, H.H., Lee, S.G., Kim, K.H., 2013. Prediction of adult emergence time and generation number of overwintering small brown planthopper, Laodelphax striatellus according to RCP8.5 climate change scenario. Kor. J. Appl. Entomol. 52, 427-430. https://doi.org/10.5656/KSAE.2013.11.0.081
  10. Kim, E., Choi, B., Park, Y., Cha, O., Jung, C., Lee, D., Kim, K., Kim, Y., 2014. Overwintering conditions of the diamondback moth and genetic variation of overwintering populations. Kor. J. Appl. Entomol. 53, 355-365. https://doi.org/10.5656/KSAE.2014.09.0.035
  11. Kim, E., Park, A., Park, Y., Kim, J., Kim, Y., 2015. Decrease in genetic variation of overwintering populations of the diamondback moth during seasonal occurrence. Kor. J. Appl. Entomol., 54, 303-310.
  12. Kim, M.H., Lee, S.C., 1991. Bionomics of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) in southern region of Korea. Kor. J. Appl. Entomol. 30, 169-173.
  13. Kim, Y., Kim, K., Kim, N., 1999. Genetic difference of two field populations of Plutella xylostella (Linné) (Lepidoptera: Yponomeutidae) measured with four polymorphic allozymes. J. Asia Pac. Entomol. 2, 1-5. https://doi.org/10.1016/S1226-8615(08)60024-2
  14. Kim, Y., Kim, N., 1997. Cold hardiness in Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 26, 1117-1123. https://doi.org/10.1093/ee/26.5.1117
  15. Kim, Y.H., Lee, J.H., Lee, S.H., 2011. Determination of organophosphate and carbamate resistance allele frequency in diamondback moth populations by quantitative sequencing and inhibition tests. J. Asia Pac. Entomol. 14, 29-33. https://doi.org/10.1016/j.aspen.2010.11.007
  16. Kiritani, K., 2006. Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Popul. Ecol. 48, 5-12. https://doi.org/10.1007/s10144-005-0225-0
  17. Lee, K.Y., Chang, Y., Kim Y., 2002. Trehalose, a major sugar cryoprotectant of the overwintering rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae). J. Asia Pac. Entomol. 5, 1-7.
  18. Lee, S., Heo, I., Lee, K., Kim, S., Lee, Y., Kwon, W.T., 2008. Impacts of climate change on phenology and growth of crops: in the case of Naju. J. Kor. Geogr. Soc. 43, 20-35.
  19. Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}CT}$ method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  20. Mikkola, K., 1970. The interpretation of long-range migrations of Spodoptera exigua Hb. (Lepidoptera: Noctuidae). J. Anim. Ecol. 39, 593-598. https://doi.org/10.2307/2856
  21. NIMR (National Institute of Meteorological Research), 2011. Report on climate change scenarios for IPCC AR5, National Institute of Meteorological Research.
  22. Park, Y., Kim, Y., 2013. RNA interference of glycerol biosynthesis suppresses rapid cold hardening of the beet armyworm, Spodoptera exigua. J. Exp. Biol. 216, 4196-4203. https://doi.org/10.1242/jeb.092031
  23. Park, Y., Kim, Y., 2014. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella. J. Insect Physiol. 67, 56-63. https://doi.org/10.1016/j.jinsphys.2014.06.010
  24. SAS Institute, Inc., 1989. SAS/STAT User's Guide, Release 6.03, Ed. Cary, NC, USA.
  25. Shim, K.M., Kim, Y.S., Jung, M.P., Kim, S.C., Min, S.H., So, K.H., 2013. Agro-climate zonal characteristics of the frequency of abnormal air temperature occurrence in South Korea. Clim. Change Res. 4, 189-199.
  26. Sonoda, S., Ashfaq, M., Tsumuki, H., 2006. Cloning and nucleotide sequencing of three heat shock protein genes (hsp90, hsc70, and hsp19.5) from the diamondback moth, Plutella xylostella (L.) and their expression in relation to developmental stage and temperature. Arch. Insect Biochem. Physiol. 62, 80-90. https://doi.org/10.1002/arch.20124
  27. Springer, M.A., Lindquist, S., 1998. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell 1, 639-648. https://doi.org/10.1016/S1097-2765(00)80064-7
  28. Storey, K.B., Storey, J.M., 2012. Insect cold hardiness: metabolic, gene, and protein adaptation. Can. J. Zool. 90, 456-475. https://doi.org/10.1139/z2012-011
  29. Xu, Q., Zou, Q., Zheng, H., Zhang, F., Tang, B., Wang, S., 2011. Three heat shock proteins from Spodoptera exigua: gene cloning, characterization and comparative stress response during heat and cold shocks. Comp. Biochem. Physiol. B 159, 92-102.
  30. Zhang, G.H., Liu, H., Wang, J.J., Wang, Z.Y., 2014. Effects of thermal stress on lipid peroxidation and antioxidant enzyme activities of the predatory mite, Neoseiulus cucumeris (Acari: Phytoseiidae). Exp. Appl. Acarol. 64, 73-85. https://doi.org/10.1007/s10493-014-9806-y
  31. Zhang, L.J., Wu, Z.L., Wang, K.F., Liu, Q., Zhuang, H.M., Wu, G., 2015a. Trade-off between thermal tolerance and insecticide resistance in Plutella xylostella. Ecol. Evol. 5, 515-530. https://doi.org/10.1002/ece3.1380
  32. Zhang, S., Fu, W., Li, N., Zhang, F., Liu, T.X., 2015b. Antioxidant responses of Propylaea japonica (Coleoptera: Coccinellidae) exposed to high temperature stress. J. Insect Physiol. 73, 47-52. https://doi.org/10.1016/j.jinsphys.2015.01.004
  33. Zhang, W., Rudolf, V.H., Ma, C.S., 2015c. Stage-specific heat effects: timing and duration of heat waves alter demographic rates of a global insect pest. Oecologia 179, 947-957. https://doi.org/10.1007/s00442-015-3409-0