DOI QR코드

DOI QR Code

Development of blend membrane by sulfonated polyethersulfone for whey ultrafiltration

  • Esfandian, Fatemeh (Membrane Research Group, Nanobiotechnology Institute, Babol University of Technology) ;
  • Peyravi, Majid (Membrane Research Group, Nanobiotechnology Institute, Babol University of Technology) ;
  • Qoreyshi, Ali Asqar (Membrane Research Group, Nanobiotechnology Institute, Babol University of Technology) ;
  • Jahanshahi, Mohsen (Membrane Research Group, Nanobiotechnology Institute, Babol University of Technology)
  • Received : 2015.09.27
  • Accepted : 2015.12.28
  • Published : 2016.03.25

Abstract

The present work has been focused on the development of polysulfone (PSf) ultrafiltration membrane via blending by sulfonated polyethersulfone (SPES) in order to permeability enhancement for ultrafiltration of cheese whey. In this regards, sulfonation of polyethersulfone was carried out and the degree of sulfonation was estimated. The effect of blend ratio on morphology, porosity, permeation and fouling of PSf / SPES membranes was investigated. Filtration experiments of whey were conducted for separation of macromolecules and proteins from the lactose enrichment phase. The morphology and performance of membranes were evaluated using different techniques such SEM, AFM, and contact angle measurements. The contact angle measurement showed that the hydrophilicity of membrane was increased by adding SPES. According to AFM images, PSf / SPES membranes exhibited lower roughness compared to neat PSf membrane. The water and whey flux of these membranes were higher than neat membrane. However, flux was decreased when the PSf / SPES blend ratio was 0/100. It can be attributed to pore size and morphology changes. Further, fouling parameters of PSf membrane were improved after blending. The blend membranes show a great potential to be used practically in proteins separation from cheese whey.

Keywords

References

  1. Alpatova, A., Kim, E.-S., Sun, X., Hwang, G., Liu, Y. and El-Din, M.G. (2013), "Fabrication of porous polymeric nanocomposite membranes with enhanced anti-fouling properties: Effect of casting composition", J. Membr. Sci., 444, 449-460. https://doi.org/10.1016/j.memsci.2013.05.034
  2. Arguello, M., Alvarez, S., Riera, F. and Alvarez, R. (2003), "Enzymatic cleaning of inorganic ultrafiltration membranes used for whey protein fractionation", J. Membr. Sci., 216(1-2), 121-134. https://doi.org/10.1016/S0376-7388(03)00064-4
  3. Arthanareeswaran, G., Latha, C., Mohan, D., Raajenthiren, M. and Srinivasan, K. (2006), "Studies on cellulose acetate/low cyclic dimmer polysulfone blend ultrafiltration membranes and their applications", J. Separ. Sci. Technol., 41(13), 2895-2912. https://doi.org/10.1080/01496390600786192
  4. Baldasso, C., Barros, T. and Tessaro, I. (2011), "Concentration and purification of whey proteins by ultrafiltration", Desalination, 278(1-3), 381-386. https://doi.org/10.1016/j.desal.2011.05.055
  5. Blanco, J., Nguyen, Q. and Schaetzel, P. (2001), "Novel hydrophilic membrane materials: sulfonated polyethersulfone Cardo", J. Membr. Sci., 186(2), 267-279. https://doi.org/10.1016/S0376-7388(01)00331-3
  6. Bottino, A., Capannelli, G., Munari, S. and Turturro, A. (1988), "High performance ultrafiltration membranes cast from LiCl doped solutions", Desalination, 68(2-3), 167-177. https://doi.org/10.1016/0011-9164(88)80052-3
  7. Chakrabarty, B., Ghoshal, A. and Purkait, M. (2008), "Effect of molecular weight of PEG on membrane morphology and transport properties", J. Membr. Sci., 309(1-2), 209-221. https://doi.org/10.1016/j.memsci.2007.10.027
  8. Corbaton-Baguena, M.-J., A lvarez-Blanco, S. and Vincent-Vela, M.-C. (2015), "Fouling mechanisms of ultrafiltration membranes fouled with whey model solutions", Desalination, 360, 87-96. https://doi.org/10.1016/j.desal.2015.01.019
  9. Costa, A.R., de Pinho, M.N. and Elimelech, M. (2006), "Mechanisms of colloidal natural organic matter fouling in ultrafiltration", J. Membr. Sci., 281(1-2), 716-725. https://doi.org/10.1016/j.memsci.2006.04.044
  10. Das, B., Sarkar, S., Sarkar, A., Bhattacharjee, S. and Bhattacharjee, C. (2015), "Recovery of whey proteins and lactose from dairy waste: A step towards green waste management", Process Safety and Environmental Protection. [In Press]
  11. De Souza, R.R., Bergamasco, R., da Costa, S.C., Feng, X., Faria, S.H.B. and Gimenes, M.L. (2010), "Recovery and purification of lactose from whey", Chem. Eng. Process.: Process Intensif., 49(11), 1137-1143. https://doi.org/10.1016/j.cep.2010.08.015
  12. Faibish, R.S. and Cohen, Y. (2001), "Fouling and rejection behavior of ceramic and polymer-modified ceramic membranes for ultrafiltration of oil-in-water emulsions and microemulsions", Colloid. Surf. A: Physicochem. Eng. Asp., 191(1-2), 27-40. https://doi.org/10.1016/S0927-7757(01)00761-0
  13. Fane, A. and Fell, C. (1987), "A review of fouling and fouling control in ultrafiltration", J. Desal., 62, 117-136. https://doi.org/10.1016/0011-9164(87)87013-3
  14. Hinkova, A., Zidova, P., Pour, V., Bubnik, Z., Henke, S., Salova, A. and Kadlec, P. (2012), "Potential of membrane separation processes in cheese whey fractionation and separation", Procedia Eng., 42, 1425-1436. https://doi.org/10.1016/j.proeng.2012.07.536
  15. Indok Nurul Hasyimah, M., Mohammad, A. and Markom, M. (2011), "Influence of triglycerides on fouling of glycerol-water with ultrafiltration membranes", Ind. Eng. Chem. Res., 50(12), 7520-7526. https://doi.org/10.1021/ie2000727
  16. Jacob, K.N., Kumar, S.S., Thanigaivelan, A., Tarun, M. and Mohan, D. (2014), "Sulfonated polyethersulfone-based membranes for metal ion removal via a hybrid process", J. Mater. Sci., 49(1), 114-122. https://doi.org/10.1007/s10853-013-7682-1
  17. James, B.J., Jing, Y. and Chen, X.D. (2003), "Membrane fouling during filtration of milk--a microstructural study", J. Food Eng., 60(4), 431-437. https://doi.org/10.1016/S0260-8774(03)00066-9
  18. Jung, Y.C. and Bhushan, B. (2006), "Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for super hydrophobicity", Nanotechnology, 17(19), 4970. https://doi.org/10.1088/0957-4484/17/19/033
  19. Kesting, R.E. (1965), "Semipermeable membranes of cellulose acetate for desalination in the process of reverse osmosis. I. Lyotropic swelling of secondary cellulose acetate", J. Appl. Polym. Sci., 9(2), 663-688. https://doi.org/10.1002/app.1965.070090226
  20. Kiadehi, A.D., Rahimpour, A., Jahanshahi, M. and Ghoreyshi, A.A. (2015), "Novel carbon nano-fibers (CNF)/polysulfone (PSf) mixed matrix membranes for gas separation", J. Ind. Eng. Chem., 22, 199-207. https://doi.org/10.1016/j.jiec.2014.07.011
  21. Kim, E.-S., Yu, Q. and Deng, B. (2011), "Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling", J. Appl. Surf. Sci., 257(23), 9863-9871. https://doi.org/10.1016/j.apsusc.2011.06.059
  22. Klaysom, C., Ladewig, B.P., Lu, G.M. and Wang, L. (2011), "Preparation and characterization of sulfonated polyethersulfone for cation-exchange membranes", J. Membr. Sci., 368(1-2), 48-53. https://doi.org/10.1016/j.memsci.2010.11.006
  23. Koo, C.H., Mohammad, A.W. and Talib, M.Z.M. (2012), "Review of the effect of selected physicochemical factors on membrane fouling propensity based on fouling indices", Desalination, 287, 167-177. https://doi.org/10.1016/j.desal.2011.11.003
  24. Lalia, B.S., Kochkodan, V., Hashaikeh, R. and Hilal, N. (2013), "A review on membrane fabrication: Structure, properties and performance relationship", Desalination, 326, 77-95. https://doi.org/10.1016/j.desal.2013.06.016
  25. Lee, H.J., Won, J., Lee, H. and Kang, Y.S. (2002), "Solution properties of poly (amic acid)-NMP containing LiCl and their effects on membrane morphologies", J. Membr. Sci., 196(2), 267-277. https://doi.org/10.1016/S0376-7388(01)00610-X
  26. Li, H., Shi, W., Zhang, Y. and Zhou, R. (2015), "Comparison study of the effect of blending method on PVDF/PPTA blend membrane structure and performance", Membr. Water Treat., Int. J., 6(3), 205-224. https://doi.org/10.12989/mwt.2015.6.3.205
  27. Ma, H., Bowman, C.N. and Davis, R.H. (2000), "Membrane fouling reduction by backpulsing and surface modification", J. Membr. Sci., 173(2), 191-200. https://doi.org/10.1016/S0376-7388(00)00360-4
  28. Majeed, S., Fierro, D., Buhr, K., Wind, J., Du, B., Boschetti-de-Fierro, A. and Abetz, V. (2012), "Multiwalled carbon nanotubes (MWCNTs) mixed polyacrylonitrile (PAN) ultrafiltration membranes", J. Membr. Sci., 403, 101-109.
  29. Mohammadi, T., Madaeni, S. and Moghadam, M. (2003), "Investigation of membrane fouling", Desalination, 153(1-3), 155-160. https://doi.org/10.1016/S0011-9164(02)01118-9
  30. Pan, K., Song, Q., Wang, L. and Cao, B. (2011), "A study of demineralization of whey by nanofiltration membrane", Desalination, 267(2-3), 217-221. https://doi.org/10.1016/j.desal.2010.09.029
  31. Patri, M., Hande, V.R., Phadnis, S., Somaiah, B., Roychoudhury, S. and Deb, P. (2004), "Synthesis and characterization of SPE membrane based on sulfonated FEP-g-acrylic acid by radiation induced graft copolymerization for PEM fuel cell", Polym. Adv. Technol., 15(5), 270-274. https://doi.org/10.1002/pat.472
  32. Peldszus, S., Halle, C., Peiris, R.H., Hamouda, M., Jin, X., Legge, R.L., Budman, H., Moresoli, C. and Huck, P.M. (2011), "Reversible and irreversible low-pressure membrane foulants in drinking water treatment: identification by principal component analysis of fluorescence EEM and mitigation by biofiltration pretreatment", Water Res., 45(16), 5161-5170. https://doi.org/10.1016/j.watres.2011.07.022
  33. Peyravi, M., Rahimpour, A. and Jahanshahi, M. (2015), "Developing nanocomposite PI membranes: Morphology and performance to glycerol removal at the downstream processing of biodiesel production", J. Membr. Sci., 473, 72-84. https://doi.org/10.1016/j.memsci.2014.08.009
  34. Pieracci, J., Crivello, J.V. and Belfort, G. (1999), "Photochemical modification of 10 kDa polyethersulfone ultrafiltration membranes for reduction of biofouling", J. Membr. Sci., 156(2), 223-240. https://doi.org/10.1016/S0376-7388(98)00347-0
  35. Qin, P., Hong, X., Karim, M.N., Shintani, T., Li, J. and Chen, C. (2013), "Preparation of poly (phthalazinone-ether-sulfone) sponge-like ultrafiltration membrane", Langmuir, 29, 4167-4175. https://doi.org/10.1021/la400324b
  36. Qiu, S., Wu, L., Pan, X., Zhang, L., Chen, H. and Gao, C. (2009), "Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes", J. Membr. Sci., 342(1-2), 165-172. https://doi.org/10.1016/j.memsci.2009.06.041
  37. Rahimpour, A., Madaeni, S.S., Jahanshahi, M., Mansourpanah, Y. and Mortazavian, N. (2009a), "Development of high performance nano-porous polyethersulfone ultrafiltration membranes with hydrophilic surface and superior antifouling properties", J. Appl. Surf. Sci., 255(22), 9166-9173. https://doi.org/10.1016/j.apsusc.2009.06.123
  38. Rahimpour, A., Madaeni, S., Zereshki, S. and Mansourpanah, Y. (2009b), "Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting", J. Appl. Surf. Sci., 255(16), 7455-7461. https://doi.org/10.1016/j.apsusc.2009.04.021
  39. Rahimpour, A., Jahanshahi, M., Mortazavian, N., Madaeni, S.S. and Mansourpanah, Y. (2010a), "Preparation and characterization of asymmetric polyethersulfone and thin-film composite polyamide nanofiltration membranes for water softening", J. Appl. Surf. Sci., 256(6), 1657-1663. https://doi.org/10.1016/j.apsusc.2009.09.089
  40. Rahimpour, A., Madaeni, S.S., Ghorbani, S., Shockravi, A. and Mansourpanah, Y. (2010b), "The influence of sulfonated polyethersulfone (SPES) on surface nano-morphology and performance of polyethersulfone (PES) membrane", J. Appl. Surf. Sci., 256(1), 1825-1831. https://doi.org/10.1016/j.apsusc.2009.10.014
  41. Rice, G., Barber, A., O'Connor, A., Stevens, G. and Kentish, S. (2009), "Fouling of NF membranes by dairy ultrafiltration permeates", J. Membr. Sci., 330(1-2), 117-126. https://doi.org/10.1016/j.memsci.2008.12.048
  42. Shibata, M., Kobayashi, T. and Fujii, N. (2000), "Porous nylon-6 membranes with dimethylamino groups for low pressure desalination", J. Appl. Polim. Sci., 75(12), 1546-1553. https://doi.org/10.1002/(SICI)1097-4628(20000321)75:12<1546::AID-APP13>3.0.CO;2-V
  43. Sinha, M. and Purkait, M. (2015), "Preparation of fouling resistant PSF flat sheet UF membrane using amphiphilic polyurethane macromolecules", Desalination, 355, 155-168. https://doi.org/10.1016/j.desal.2014.10.017
  44. Suarez, E., Lobo, A., Alvarez, S., Riera, F.A. and Alvarez, R. (2006), "Partial demineralization of whey and milk ultrafiltration permeate by nanofiltration at pilot-plant scale", Desalination, 198(1-3), 274-281. https://doi.org/10.1016/j.desal.2005.12.028
  45. Tsakali, E., Petrotos, K., D'Allessandro, A. and Goulas, P. (2010), "A review on whey composition and the methods used for its utilization for food and pharmaceutical products", Proceedings of the 6th International Conference on Simulation and Modelling in the Food and Bio-Industry (FOODSIM 2010), CIMO, Braganca, Portugal, June.
  46. Wang, D., Li, K. and Teo, W. (2000), "Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molecular additives", J. Membr. Sci., 178(1-2), 13-23. https://doi.org/10.1016/S0376-7388(00)00460-9
  47. Wang, T., Zhao, C., Li, P., Li, Y. and Wang, J. (2015), "Effect of non-solvent additives on the morphology and separation performance of poly (m-phenylene isophthalamide) (PMIA) hollow fiber nanofiltration membrane", Desalination, 365, 293-307. https://doi.org/10.1016/j.desal.2015.03.016
  48. Wu, G., Gan, S., Cui, L. and Xu, Y. (2008), "Preparation and characterization of PES/$TiO_2$ composite membranes", J. Appl. Surf. Sci., 254(21), 7080-7086. https://doi.org/10.1016/j.apsusc.2008.05.221
  49. Xing, P., Robertson, G.P., Guiver, M.D., Mikhailenko, S.D., Wang, K. and Kaliaguine, S. (2004), "Synthesis and characterization of sulfonated poly (ether ether ketone) for proton exchange membranes", J. Membr. Sci., 229(1-2), 95-106. https://doi.org/10.1016/j.memsci.2003.09.019
  50. Yang, S. and Silva, E. (1995), "Novel products and new technologies for use of a familiar carbohydrate, milk lactose", J. Dairy Sci., 78(11), 2541-2562. https://doi.org/10.3168/jds.S0022-0302(95)76884-9
  51. Yorgun, M., Balcioglu, I.A. and Saygin, O. (2008), "Performance comparison of ultrafiltration, nanofiltration and reverse osmosis on whey treatment", Desalination, 229(1-3), 204-216. https://doi.org/10.1016/j.desal.2007.09.008
  52. Zhao, C., Xu, X., Chen, J. and Yang, F. (2013), "Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes", J. Environ. Chem. Eng., 1(3), 349-354. https://doi.org/10.1016/j.jece.2013.05.014
  53. Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V. and Zangeneh, H. (2014), "Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates", J. Membr. Sci., 453, 292-301. https://doi.org/10.1016/j.memsci.2013.10.070

Cited by

  1. Reduction of proteins and products of their hydrolysis in process of cleaning post-production herring (Clupea harengus) marinating brines by using membranes vol.7, pp.5, 2016, https://doi.org/10.12989/mwt.2016.7.5.451
  2. Modification of polyethersulfone hollow fiber membrane with different polymeric additives vol.7, pp.4, 2016, https://doi.org/10.12989/mwt.2016.7.4.355
  3. Potential of Advanced Nano-structured Membranes for Landfill Leachate Treatment: A Review 2018, https://doi.org/10.1002/cben.201600020
  4. Reduction of energy demand for UF cross-flow membranes in MBR by sponge ball cleaning vol.12, pp.2, 2016, https://doi.org/10.12989/mwt.2021.12.2.065