DOI QR코드

DOI QR Code

Removal of acetic acid from wastewater by esterification in the membrane reactor

  • Unlu, Derya (Departments of Chemical Engineering, Engineering Faculty, Kocaeli University) ;
  • Hilmioglu, Nilufer Durmaz (Departments of Chemical Engineering, Engineering Faculty, Kocaeli University)
  • Received : 2015.07.06
  • Accepted : 2016.02.11
  • Published : 2016.03.25

Abstract

Acetic acid can be removed from wastewater by esterification in a membrane reactor. Pervaporation membrane reactor (PVMR) is an alternative process to conventional separation processes. It is an environmentally friendly process. The main advantages of the PVMR are simultaneous water removal and production of an ester economically. In this study, the synthetic wastewater has been used. Esterification reaction of acetic acid with isopropanol has been studied in the presence of tungstosilicic acid hydrate as a catalyst in a batch reactor and in a PVMR. The effects of important operating parameters such as reaction temperature, initial molar ratio of isopropanol to acetic acid and catalyst concentration has been examined. Removal of acetic acid (conversion of acetic acid) was obtained as 85% using a PVMR by removal of water from the reaction mixture.

Keywords

References

  1. Bianchi, C.L., Ragaini, V., Pirola, C. and Carvoli, G. (2003), "A new method to clean industrial water from acetic acid via esterification", Appl. Catal. B: Environmental, 40(2), 93-99. https://doi.org/10.1016/S0926-3373(02)00144-3
  2. Cloete, F.L.D. and Marais, A.P. (1995), "Recovery of very dilute acatic uising ion exchange", Ind. Eng. Chem. Res., 34(7), 2464-2467. https://doi.org/10.1021/ie00046a030
  3. Cui, Z., Xiang, Y., Si, J., Yang, M., Zhang, Q. and Zhang, T. (2008), "Ionic interactions between sulfuric acid and chitosan membranes", Carbohyd. Polym., 73(1), 111-116. https://doi.org/10.1016/j.carbpol.2007.11.009
  4. Delgado, P., Sanz, M.T. and Beltran, S. (2009), "Pervaporation of the quaternary mixture present during the esterification of lactic acid with ethanol", J. Membr. Sci., 332(1-2), 113-120. https://doi.org/10.1016/j.memsci.2009.01.044
  5. Diban, N., Aguayo, A.T., Bilbao, J., Urtiaga, A. and Ortiz, I. (2013), "Membrane reactors for in situ water removal: A review of applications", Ind. Eng. Chem. Res., 52(31), 10342-10354. https://doi.org/10.1021/ie3029625
  6. Hasanoǧlu, A., Salt, Y., Keleser, S. and Dincer, S. (2009), "The esterification of acetic acid with ethanol in a pervaporation membrane reactor", Desalination, 245(1-3), 662-669. https://doi.org/10.1016/j.desal.2009.02.034
  7. Huang, Z., Shi, Y., Wen, R., Guo, Y.H., Su, J.J. and Matsuura, T. (2006), "Multilayer poly(vinyl alcohol)-zeolite 4A composite membranes for ethanol dehydration by means of pervaporation", Separ. Purif. Technol., 51(2), 126-136. https://doi.org/10.1016/j.seppur.2006.01.005
  8. Khajavi, S., Jansen, J.C. and Kapteijn, F. (2010), "Application of a sodalite membrane reactor in esterification-Coupling reaction and separation", Catal. Today, 156(3-4), 132-139. https://doi.org/10.1016/j.cattod.2010.02.042
  9. Ma, J., Zhang, M., Lu, L., Yin, X., Chen, J. and Jiang, Z. (2009), "Intensifying esterification reaction between lactic acid and ethanol by pervaporation dehydration using chitosan-TEOS hybrid membranes", Chem. Eng. J., 155(3), 800-809. https://doi.org/10.1016/j.cej.2009.07.044
  10. Marszalek, J., Rdzanek, P. and Kaminski, W. (2014), "Improving performance of pervaporation membranes for biobutanol separation", Desal. Water Treat., 56(13), 1-9.
  11. Menzinger, M. and Wolfgang, R. (1969), "The meaning and use of the arrhenius activation energy", Angew. Chem. Int. Ed. Engl., 8(6) 438-444.
  12. Mulder, M.H.V. (1991), Thermodynamic Principles of Pervaporation, Elsevier, The Netherlands.
  13. Naidu, B.V.K. and Aminabhavi, T.M. (2005), "Pervaporation separation of water/2-propanol mixtures by use of the blend membranes of sodium alginate and (hydroxyethyl) cellulose: Roles of permeatemembrane interactions, zeolite filling, and membrane swelling", Ind. Eng. Chem. Res., 44(19), 7481-7489. https://doi.org/10.1021/ie050108t
  14. Nam, A., Kweon, J., Ryu, J., Lade, H. and Lee, C. (2015), "Reduction of biofouling using vanillin as a quorum sensing inhibitory agent in Membrane bioReactors for wastewater treatment", Membr. Water Treat., Int. J., 6(3), 189-203. https://doi.org/10.12989/mwt.2015.6.3.189
  15. Palmarin, M.J. and Young, S. (2016), "Influence of mixed liquor suspended solids on the removal efficiency of a hybrid membrane bioreactor", Membr. Water Treat., Int. J., 7(1), 11-22. https://doi.org/10.12989/mwt.2016.7.1.011
  16. Parulekar, S.J. (2007), "Analysis of pervaporation aided esterification of organic acids", Ind. Eng. Chem. Res., 46(25), 8490-8504. https://doi.org/10.1021/ie061157o
  17. Ragaini, V., Bianchi, C.L., Pirola, C. and Carvoli, G. (2006), "Increasing the value of dilute acetic acid streams through esterification: Part I. Experimental analysis of the reaction zone", Appl. Catal. B: Environmental, 64(1-2), 66-71. https://doi.org/10.1016/j.apcatb.2005.11.004
  18. Saha, B., Chopade, S.P. and Mahajani, S.M. (2000), "Recovery of dilute acetic acid through esterification in a reactive distillation column", Catal. Today, 60(1-2), 147-157. https://doi.org/10.1016/S0920-5861(00)00326-6
  19. Sanz, M.T. and Gmehling, J. (2006), "Esterification of acetic acid with isopropanol coupled with pervaporation. Part II. Study of a pervaporation reactor", Chem. Eng. J., 123(1-2), 9-14. https://doi.org/10.1016/j.cej.2006.06.011
  20. Unlu, D. and Hilmioglu, N. (2014), "Bioadditive synthesis from glycerol by esterification using catalytic chitosan membrane", Proceedings of International Conference on Clean Energy, Istanbul, Turkey, June.
  21. Veerapur, R.S., Gudasi, K.B., Sairam, M., Shenoy, R.V., Netaji, M., Raju, K.V.S.N. and Aminabhavi, T.M. (2007), "Novel sodium alginate composite membranes prepared by incorporating cobalt(III) complex particles used in pervaporation separation of water-acetic acid mixtures at different temperatures", J. Mater. Sci., 42(12), 4406-4417. https://doi.org/10.1007/s10853-006-0652-0
  22. Vijayakumarnaidu, B., Krishnarao, K. and Aminabhavi, T. (2005), "Pervaporation separation of water+1,4-dioxane and water+tetrahydrofuran mixtures using sodium alginate and its blend membranes with hydroxyethylcellulose-A comparative study", J. Membr. Sci., 260(1-2), 131-141. https://doi.org/10.1016/j.memsci.2005.03.026
  23. Wang, Q.W., Shi, B.L. and Ji, L.Y. (2014), "Pervaporation separation of ethanol via adsorbent-filled silicon rubber membranes", Membr. Water Treat., Int. J., 5(4), 265-279. https://doi.org/10.12989/mwt.2014.5.4.265
  24. Wasewar, K., Patidar, S. and Agarwal, V.K. (2009), "Esterification of lactic acid with ethanol in a pervaporation reactor: modeling and performance study", Desalination, 243(1-3), 305-313. https://doi.org/10.1016/j.desal.2008.04.030
  25. Won, W., Feng, X. and Lawless, D. (2003), "Separation of dimethyl carbonate/methanol/water mixtures by pervaporation using crosslinked chitosan membranes", Separ. Purif. Technol., 31(2), 129-140. https://doi.org/10.1016/S1383-5866(02)00176-4
  26. Xia, S., Dong, X., Zhu, Y., Wei, W., Xiangli, F. and Jin, W. (2011), "Dehydration of ethyl acetate-water mixtures using PVA/ceramic composite pervaporation membrane", Separ. Purif. Technol., 77(1), 53-59. https://doi.org/10.1016/j.seppur.2010.11.019
  27. Yagyu, D., Ohishi, T., Igarashi, T., Okumura, Y., Nakajo, T., Mori, Y. and Kobayashi, S. (2013), "Recovery of acetic acid from dilute aqueous solutions using catalytic dehydrative esterification with ethanol", Chemosphere, 91(1), 61-67. https://doi.org/10.1016/j.chemosphere.2012.11.078
  28. Zhang, F., Rezac, M.E., Majumdar, S., Kosaraju, P. and Nemser, S. (2014), "Improving chemical production processes by selective by-product removal in a pervaporation membrane reactor", Separ. Sci. Technol., 49(9), 1289-1297. https://doi.org/10.1080/01496395.2014.893444
  29. Zhu, Y. and Chen, H. (1998), "Pervaporation separation and pervaporation-esterification coupling using crosslinked PVA composite catalytic membranes on porous ceramic plate", J. Membr. Sci., 138(1), 123-134. https://doi.org/10.1016/S0376-7388(97)00221-4

Cited by

  1. Effect of different conditions on pervaporation dehydration in CA/NYL66 blend membrane vol.10, pp.6, 2016, https://doi.org/10.12989/mwt.2019.10.6.441