DOI QR코드

DOI QR Code

Simulation of transport phenomena in porous membrane evaporators using computational fluid dynamics

  • Mohammadi, Mehrnoush (Faculty of Engineering, Department of Chemical Engineering, South Tehran Branch, Islamic Azad University) ;
  • Marjani, Azam (Department of Chemistry, Arak Branch, Islamic Azad University) ;
  • Asadollahzadeh, Mehdi (Faculty of Engineering, Department of Chemical Engineering, South Tehran Branch, Islamic Azad University) ;
  • Hemmati, Alireza (Faculty of Engineering, Department of Chemical Engineering, South Tehran Branch, Islamic Azad University) ;
  • Kazemi, Seyyed Masoud (Faculty of Chemistry, Department of Analytical Chemistry, North Tehran Branch, Islamic Azad University)
  • Received : 2015.08.16
  • Accepted : 2015.12.29
  • Published : 2016.03.25

Abstract

A numerical simulation of membrane evaporation process was carried out in this work. The aim of simulation is to describe transport of water through porous membranes applicable to the concentration of aqueous solutions. A three-dimensional mathematical model was developed which considers transport phenomena including mass, heat, and momentum transfer in membrane evaporation process. The equations of model were then solved numerically using finite element method. The results of simulation in terms of evaporation flux were compared with experimental data, and confirmed the accuracy of model. Moreover, profile of pressure, concentration, and heat flux were obtained and analyzed. The results revealed that developed 3D model is capable of predicting performance of membrane evaporators in concentration of aqueous solutions.

Keywords

Acknowledgement

Supported by : Islamic Azad University

References

  1. Abdullah, N.S. and Das, D.B. (2007), "Modelling nutrient transport in hollow fibre membrane bioreactor for growing bone tissue with consideration of multi-component interactions", Chem. Eng. Sci., 62(21), 5821-5839. https://doi.org/10.1016/j.ces.2007.06.024
  2. Abdullah, N.S., Das, D.B., Ye, H. and Cui, Z.F. (2006), "3D bone tissue growth in hollow fibre membrane bioreactor: Implications of various process parameters on tissue nutrition", Int. J. Artif. Organs, 29(9), 841-851. https://doi.org/10.1177/039139880602900905
  3. Al-Marzouqi, M.H., El-Naas, M.H., Marzouk, S.A.M., Al-Zarooni, M.A., Abdullatif, N. and Faiz, R. (2008), "Modeling of $CO_2$ absorption in membrane contactors", Sep. Purif. Technol., 59(3), 286-293. https://doi.org/10.1016/j.seppur.2007.06.020
  4. Cussler, E.L. (1997), Diffusion Mass Transfer in Fluid Systems, Cambridge University Press, New York, NY, USA.
  5. Das, R. (2014), "Forward and inverse solutions of a conductive, convective and radiative cylindrical porous fin", Energy Convers. Manage., 87, 96-106. https://doi.org/10.1016/j.enconman.2014.06.096
  6. Das, R. and Ooi, K.T. (2013), "Predicting multiple combination of parameters for designing a porous fin subjected to a given temperature requirement", Energy Convers. Manage., 66, 211-219. https://doi.org/10.1016/j.enconman.2012.10.019
  7. Drioli, E., Criscuoli, A. and Crucio, E. (2006), Membrane Contactors: Fundamentals, Applications and Potentialities, Elsevier, Amsterdam, The Netherlands.
  8. Fadaei, F., Shirazian, S. and Ashrafizadeh, S.N. (2011a), "Mass transfer modeling of ion transport through nanoporous media", Desalination, 281, 325-333. https://doi.org/10.1016/j.desal.2011.08.025
  9. Fadaei, F., Shirazian, S. and Ashrafizadeh, S.N. (2011b), "Mass transfer simulation of solvent extraction in hollow-fiber membrane contactors", Desalination, 275(1-3), 126-132. https://doi.org/10.1016/j.desal.2011.02.039
  10. Fadaei, F., Hoshyargar, V., Shirazian, S. and Ashrafizadeh, S.N. (2012), "Mass transfer simulation of ion separation by nanofiltration considering electrical and dielectrical effects", Desalination, 284, 316-323. https://doi.org/10.1016/j.desal.2011.09.018
  11. Fasihi, M., Shirazian, S., Marjani, A. and Rezakazemi, M. (2012), "Computational fluid dynamics simulation of transport phenomena in ceramic membranes for $SO_2$ separation", Math. Comput. Modell., 56(11-12), 278-286. https://doi.org/10.1016/j.mcm.2012.01.010
  12. Ghadiri, M. and Shirazian, S. (2013), "Computational simulation of mass transfer in extraction of alkali metals by means of nanoporous membrane extractors", Chem. Eng. Process. Process Intensif., 69, 57-62. https://doi.org/10.1016/j.cep.2013.02.008
  13. Ghadiri, M., Marjani, A. and Sanchez, J. (2013), "Mathematical modeling and simulation of $CO_2$ stripping from monoethanolamine solution using nano porous membrane contactors", Int. J. Greenhouse Gas Control, 13, 1-8. https://doi.org/10.1016/j.ijggc.2012.11.030
  14. Hengl, N., Mourgues, A., Pomier, E., Belleville, M.P., Paolucci-Jeanjean, D., Sanchez, J. and Rios, G. (2007), "Study of a new membrane evaporator with a hydrophobic metallic membrane", J. Membr. Sci., 289(1-2), 169-177. https://doi.org/10.1016/j.memsci.2006.11.051
  15. Hengl, N., Mourgues, A., Belleville, M.P., Paolucci-Jeanjean, D. and Sanchez, J. (2010), "Membrane contactor with hydrophobic metallic membranes: 2. Study of operating parameters in membrane evaporation", J. Membr. Sci., 355(1-2), 126-132. https://doi.org/10.1016/j.memsci.2010.03.009
  16. Jevons, K. and Awe, M. (2010), "Economic benefits of membrane technology vs. evaporator", Desalination, 250(3), 961-963. https://doi.org/10.1016/j.desal.2009.09.081
  17. Kiwan, S. (2007), "Thermal analysis of natural convection porous fins", Transp. Porous Med., 67(1), 17-29. https://doi.org/10.1007/s11242-006-0010-3
  18. Kohnehshahri, R.K., Salimi, M., Mohaddecy, S.R.S. and Shirazian, S. (2011), "Modeling and numerical simulation of catalytic reforming reactors", Orient. J. Chem., 27(4), 1351-1355.
  19. Kunz, W., Benhabiles, A. and Ben-Aim, R. (1996), "Osmotic evaporation through macroporous hydrophobic membranes: a survey of current research and applications", J. Membr. Sci., 121(1), 25-36. https://doi.org/10.1016/0376-7388(96)00153-6
  20. Lawson, K.W. and Lloyd, D.R. (1997), "Membrane distillation", J. Membr. Sci., 124(1), 1-25. https://doi.org/10.1016/S0376-7388(96)00236-0
  21. Marjani, A. and Shirazian, S. (2011a), "Computational fluid dynamics simulation of ammonia removal from wastewaters by membrane", Asian J. Chem., 23(7), 3299-3300.
  22. Marjani, A. and Shirazian, S. (2011b), "Hydrodynamic investigations on heavy metal extraction in membrane extractors", Orient. J. Chem., 27(4), 1311-1316.
  23. Marjani, A. and Shirazian, S. (2011c), "Investigation on copper extraction using numerical simulation", Asian J. Chem., 23(7), 3289-3290.
  24. Marjani, A. and Shirazian, S. (2011d), "Investigation on numerical simulation of acetone and ethanol separation from water by using membrane", Asian J. Chem., 23(7), 3293-3294.
  25. Marjani, A. and Shirazian, S. (2011e), "Simulation of heavy metal extraction in membrane contactors using computational fluid dynamics", Desalination, 281, 422-428. https://doi.org/10.1016/j.desal.2011.08.032
  26. Marjani, A. and Shirazian, S. (2012a), "Application of CFD Techniques for Prediction of NH3 transport through porous membranes", Orient. J. Chem., 28(1), 67-72. https://doi.org/10.13005/ojc/280110
  27. Marjani, A. and Shirazian, S. (2012b), "CFD simulation of mass transfer in membrane evaporators for concentration of aqueous solutions", Orient. J. Chem., 28(1), 83-87. https://doi.org/10.13005/ojc/280112
  28. Marjani, A. and Shirazian, S. (2012c), "Mathematical modeling and cfd simulation of hydrocarbon purification using membrane technology", Orient. J. Chem., 28(1), 123-129. https://doi.org/10.13005/ojc/280118
  29. Marjani, A. and Shirazian, S. (2012d), "Modeling of organic mixtures separation in dense membranes using finite element method (FEM)", Orient. J. Chem., 28(1), 41-46. https://doi.org/10.13005/ojc/280106
  30. Marjani, A. and Shirazian, S. (2012e), "Theoretical studies on copper extraction by means of polymeric membrane contactors", Orient. J. Chem., 28(1), 23-28. https://doi.org/10.13005/ojc/280104
  31. Marjani, A., Shirazi, Y. and Shirazian, S. (2011), "Investigation on the best conditions for purification of multiwall carbon nanotubes", Asian J. Chem., 23(7), 3205-3207.
  32. Marjani, A., Shirazian, S., Ranjbar, M. and Ahmadi, M. (2012), "Mathematical modeling of gas separation in flat-sheet membrane contactors", Orient. J. Chem., 28(1), 13-18. https://doi.org/10.13005/ojc/280102
  33. Moghadassi, A., Marjani, A., Shirazian, S. and Moradi, S. (2011), "Gas separation properties of hollow-fiber membranes of polypropylene and polycarbonate by melt-spinning method", Asian J. Chem., 23(5), 1922-1924.
  34. Mohammadi, M., Kazemi, S.M. and Torkaman, R. (2015), "CFD simulation of water transport through porous membrane evaporators", Desalin. Water Treat., 57(23), 1-8.
  35. Mourgues, A., Hengl, N., Belleville, M.P., Paolucci-Jeanjean, D. and Sanchez, J. (2010), "Membrane contactor with hydrophobic metallic membranes: 1. Modeling of coupled mass and heat transfers in membrane evaporation", J. Membr. Sci., 355(1-2), 112-125. https://doi.org/10.1016/j.memsci.2010.02.040
  36. Nii, S., Jebson, R.S. and Cussler, E.L. (2002), "Membrane evaporators", J. Membr. Sci., 201(1-2), 149-159. https://doi.org/10.1016/S0376-7388(01)00725-6
  37. Pishnamazi, M., Marjani, A., Shirazian, S. and Samipurgiri, M. (2012), "Mathematical modeling and numerical simulation of wastewater treatment unit using CFD", Orient. J. Chem., 28(1), 51-58. https://doi.org/10.13005/ojc/280108
  38. Postelnicu, A. (2007), "Influence of chemical reaction on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects", Heat Mass Transfer., 43(6), 595-602. https://doi.org/10.1007/s00231-006-0132-8
  39. Razavi, S.M.R., Razavi, S.M.J., Miri, T. and Shirazian, S. (2013), "CFD simulation of $CO_2$ capture from gas mixtures in nanoporous membranes by solution of 2-amino-2-methyl-1-propanol and piperazine", Int. J. Greenhouse Gas Control, 15(0), 142-149. https://doi.org/10.1016/j.ijggc.2013.02.011
  40. Rezakazemi, M., Niazi, Z., Mirfendereski, M., Shirazian, S., Mohammadi, T. and Pak, A. (2011a), "CFD simulation of natural gas sweetening in a gas-liquid hollow-fiber membrane contactor", Chem. Eng. J., 168(3), 1217-1226. https://doi.org/10.1016/j.cej.2011.02.019
  41. Rezakazemi, M., Shahverdi, M., Shirazian, S., Mohammadi, T. and Pak, A. (2011b), "CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation", Chem. Eng. J., 168(1), 60-67. https://doi.org/10.1016/j.cej.2010.12.034
  42. Rezakazemi, M., Shirazian, S. and Ashrafizadeh, S.N. (2012), "Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor", Desalination, 285, 383-392. https://doi.org/10.1016/j.desal.2011.10.030
  43. Romero, J., Draga, H., Belleville, M.P., Sanchez, J., Combe-James, C., Dornier, M. and Rios, G.M. (2006), "New hydrophobic membranes for contactor processes--Applications to isothermal concentration of solutions", Desalination, 193(1-3), 280-285. https://doi.org/10.1016/j.desal.2005.05.033
  44. Shahid, M. and Pashley, R.M. (2014), "A study of the bubble column evaporator method for thermal desalination", Desalination, 351, 236-242. https://doi.org/10.1016/j.desal.2014.07.014
  45. Shirazian, S. and Ashrafizadeh, S.N. (2010a), "Mass transfer simulation of caffeine extraction by subcritical $CO_2$ in a hollow-fiber membrane contactor", Solvent Extr. Ion Exch., 28(2), 267-286. https://doi.org/10.1080/07366290903557932
  46. Shirazian, S. and Ashrafizadeh, S.N. (2010b), "Mass transfer simulation of carbon dioxide absorption in a hollow-fiber membrane contactor", Sep. Sci. Technol., 45(4), 515-524. https://doi.org/10.1080/01496390903530081
  47. Shirazian, S. and Ashrafizadeh, S.N. (2013), "3D modeling and simulation of mass transfer in vapor transport through porous membranes", Chem. Eng. Technol., 36(1), 177-185. https://doi.org/10.1002/ceat.201200299
  48. Shirazian, S., Moghadassi, A. and Moradi, S. (2009), "Numerical simulation of mass transfer in gas-liquid hollow fiber membrane contactors for laminar flow conditions", Simul. Modell. Pract. Theory., 17(4), 708-718. https://doi.org/10.1016/j.simpat.2008.12.002
  49. Shirazian, S., Marjani, A. and Azizmohammadi, F. (2011a), "Prediction of $SO_2$ transport across ceramic membranes using finite element method (FEM)", Orient. J. Chem., 27(2), 485-490.
  50. Shirazian, S., Marjani, A. and Fadaei, F. (2011b), "Supercritical extraction of organic solutes from aqueous solutions by means of membrane contactors: CFD simulation", Desalination, 277(1-3), 135-140. https://doi.org/10.1016/j.desal.2011.04.011
  51. Shirazian, S., Rezakazemi, M., Marjani, A. and Moradi, S. (2012), "Hydrodynamics and mass transfer simulation of wastewater treatment in membrane reactors", Desalination, 286, 290-295. https://doi.org/10.1016/j.desal.2011.11.039
  52. Sohrabi, M.R., Marjani, A., Moradi, S., Davallo, M. and Shirazian, S. (2011a), "Mathematical modeling and numerical simulation of $CO_2$ transport through hollow-fiber membranes", Appl. Math. Modell., 35(1), 174-188. https://doi.org/10.1016/j.apm.2010.05.016
  53. Sohrabi, M.R., Marjani, A., Davallo, M. and Shirazian, S. (2011b), "Preparation and simulation of polycarbonate hollow-fiber membrane for gas separation", Asian J. Chem., 23(1), 302-304.
  54. Sohrabi, M.R., Marjani, A., Moradi, S. and Shirazian, S. (2011c), "Simulation studies on $H_2S$ absorption in potassium carbonate aqueous solution using a membrane module", Asian J. Chem., 23(9), 4227-4228.
  55. Sohrabi, M.R., Marjani, A., Shirazian, S. and Moradi, S. (2011d), "Simulation of ethanol and acetone extraction from aqueous solutions in membrane contactors", Asian J. Chem., 23(9), 4229-4230.
  56. Ye, H., Das, D.B., Triffitt, J.T. and Cui, Z.F. (2006), "Modelling nutrient transport in hollow fibre membrane bioreactors for growing three-dimensional bone tissue", J. Membr. Sci., 272(1-2), 169-178. https://doi.org/10.1016/j.memsci.2005.07.040

Cited by

  1. Liquid-liquid extraction process for gas separation from water in polymeric membrane: Mathematical modeling and simulation vol.7, pp.5, 2016, https://doi.org/10.12989/mwt.2016.7.5.463