DOI QR코드

DOI QR Code

Castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposite

  • Bhagawati, Deepshikha (Advanced Polymer and Nanomaterial Laboratory, Center for Polymer Science and Technology, Department of Chemical Sciences, Tezpur University) ;
  • Thakur, Suman (Advanced Polymer and Nanomaterial Laboratory, Center for Polymer Science and Technology, Department of Chemical Sciences, Tezpur University) ;
  • Karak, Niranjan (Advanced Polymer and Nanomaterial Laboratory, Center for Polymer Science and Technology, Department of Chemical Sciences, Tezpur University)
  • Received : 2015.11.12
  • Accepted : 2016.02.25
  • Published : 2016.03.25

Abstract

A low cost environmentally benign surface coating binder is highly desirable in the field of material science. In this report, castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposites were fabricated to achieve the desired performance. The hyperbranched polyester resin was synthesized by a three-step one pot condensation reaction using monoglyceride of castor oil based carboxyl terminated pre-polymer and 2,2-bis (hydroxymethyl) propionic acid. Also, the bulk fly ash of paper industry waste was converted to hydrophilic nano fly ash by ultrasonication followed by transforming it to an organonano fly ash by the modification with bitumen. The synthesized polyester resin and its nanocomposites were characterized by different analytical and spectroscopic tools. The nanocomposite obtained in presence of 20 wt% styrene (with respect to polyester) was found to be more homogeneous and stable compared to nanocomposite without styrene. The performance in terms of tensile strength, impact resistance, scratch hardness, chemical resistance and thermal stability was found to be improved significantly after formation of nanocomposite compared to the pristine system after curing with bisphenol-A based epoxy and poly(amido amine). The overall results of transmission electron microscopic (TEM) analysis and performance showed good exfoliation of the nano fly ash in the polyester matrix. Thus the studied nanocomposites would open up a new avenue on development of low cost high performing surface coating materials.

Keywords

References

  1. Belardi, G., Massimilla, S. and Massimillav, L.P. (1998), "Crystallization of K-L and K-W zeolites from flyash", Resour. Conserv. Cyle., 24, 167-181. https://doi.org/10.1016/S0921-3449(98)00016-0
  2. Borrego, A.G., Blanco, C.G., Prado, J.G., Diaz, C. and Guillen, M.D. (1996), "$^{1}H$ NMR and FTIR spectroscopic studies of bitumen and shale oil from selected spanish oil shales", Energy Fuel., 10, 77-84. https://doi.org/10.1021/ef950111x
  3. Can, E., Wool, R.P. and Kusefoglu, S. (2006), "Soybean-and castor-oil-based thermosetting polymers: Mechanical properties", J. Appl. Polym. Sci., 102, 1497-1504 https://doi.org/10.1002/app.24423
  4. Cao, G., Choi, H., Konishi, H., Kou, S., Lakes, R. and Li, X. (2008a), "Mg-6Zn/1 5% SiC nanocomposites fabricated by ultrasonic cavitation-based solidification processing", J. Mater. Sci., 43, 5521-5526. https://doi.org/10.1007/s10853-008-2785-9
  5. Cao, G., Konishi, H. and Li, X. (2008b), "Mechanical properties and microstructure of SiC reinforced Mg-(2,4) Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing", Mater. Sci. Eng-A, 486, 357-362. https://doi.org/10.1016/j.msea.2007.09.054
  6. Chun, B.C., Cho, T.K. and Chang, Y.C. (2006), "Enhanced mechanical and shape memory properties of polyurethane block copolymers chain-extended by ethylene", Eur. Polym. J., 42, 3367-3373. https://doi.org/10.1016/j.eurpolymj.2006.08.013
  7. Cioffi, R., Pernice, P., Aronne, A., Catauro, M. and Quattroni, G. (1994), "Glass-ceramic from fly ash with added $LiO_2$", J. Euro. Ceramic Soc., 13, 143-148. https://doi.org/10.1016/0955-2219(94)90112-0
  8. Criado, M., Fernandez-Jimenez, A., de la Torre, A.G., Aranda, M.A.G. and Palomo, A. (2007), "An XRD study of the effect of the $SiO_2$/$Na_2O ratio on the alkali activation of fly ash", Cem. Concr. Res., 37, 671-679. https://doi.org/10.1016/j.cemconres.2007.01.013
  9. De, B., Gupta, K., Mandal, M. and Karak, N. (2014), "Biodegradable hyperbranched epoxy from castor oilbased hyperbranched polyester polyol", ACS Sustain. Chem. Eng., 2, 445-453. https://doi.org/10.1021/sc400358b
  10. Diaconu, G., Paulis, M. and Leiza, J.R. (2008), "Towards the synthesis of high solids content waterborne poly(methyl methacrylate-co-butyl acrylate)/montmorillonite nanocomposites", Polymer, 49, 2444-2454. https://doi.org/10.1016/j.polymer.2008.03.038
  11. Gaohui, W., Jian, G. and Xiao, Z. (2007), "Preparation and dynamic mechanical properties of polyurethane modified epoxy composites filled with functionalized fly ash particulates", J. Appl. Polym. Sci., 105, 1118-1126. https://doi.org/10.1002/app.26146
  12. Karak, N. (2009), Fundamentals of Polymers: Raw Materials to Finish Products, PHI Learning Pvt. Ltd., New Delhi, India.
  13. Karak, N. (2012), Vegetable Oil-based Polymers: Properties, Processing and Applications, Woodhead Publishing Limited, Cambridge, UK.
  14. Karak, N. and Maiti, S. (2008) Dendrimers and Hyperbranched Polymers-Synthesis to Applications, MD Publication Pvt. Ltd., New Delhi, India.
  15. Khan, M.J., Al-Juhani, A.A., Ul-Hamid, A., Shawabkeh, R. and Hussein, I.A. (2011), "Effect of chemical modification of oil fly ash and compatibilization on the rheological and morphological properties of lowdensity polyethylene composites", J. Appl. Polym. Sci., 122, 2486-2496. https://doi.org/10.1002/app.34349
  16. Khan, R., Khare, P., Baruah, B.P., Hazarika, A.K. and Dey, N.C. (2011), "Spectroscopic, kinetic studies of polyaniline-flyash composite", Adv. Chem. Eng. Sci., 1, 37-44 https://doi.org/10.4236/aces.2011.12007
  17. Kokane, S.V. (2002), "Epoxy system-a review", Paint India, 52, 69-81.
  18. Konwar, U., Karak, N. and Mandal, M. (2009), "Mesua ferrea L. seed oil based highly thermostable and biodegradable polyester/clay nanocomposites", J. Polym. Degrad. Stab., 94, 2221-2230. https://doi.org/10.1016/j.polymdegradstab.2009.09.001
  19. Kornmann, X., Lindberg, H. and Berglund, L.A. (2001), "Synthesis of epoxy-clay nanocomposites. Influence of the nature of the curing agent on structure", Polymer, 42, 4493-4499. https://doi.org/10.1016/S0032-3861(00)00801-6
  20. Kornmann, X., Thomann, R., Mulhaupt, R., Finter, J. and Berglund, L.A. (2002), "Synthesis of aminecured, epoxy-layered silicate nanocomposites: The influence of the silicate surface modification on the properties", J. App. Polym. Sci., 86, 2643-2652. https://doi.org/10.1002/app.11279
  21. Krook, M., Albertsson, A.C., Gedde, U.W. and Hedenqvist, M.S. (2002), "Barrier and mechanical properties of montmorillonite/polyesteramide nanocomposites", Polym. Eng. Sci., 42, 1238-1246. https://doi.org/10.1002/pen.11027
  22. Krzan, A. (2009), "Highly oxidized polymers as an extreme of biodegradable polymers", J. Mol. Struct-THEOCHEM, 902, 49-53. https://doi.org/10.1016/j.theochem.2009.02.008
  23. Kunduru, K.R., Basu, A., Zada, M.H. and Domb, A.J. (2015), "Castor oil-based biodegradable polyesters", Biomacromol., 16, 2572-2587. https://doi.org/10.1021/acs.biomac.5b00923
  24. Kusuma, G.J., Shimada, H., Sasaoka, T., Matsui, K., Nugraha, C., Gautama, R.S. and Sulistianto, B. (2012), "An evaluation on the physical and chemical composition of coal combustion ash and its co-placement with coal-mine waste rock", J. Environ. Prot., 3, 589-596. https://doi.org/10.4236/jep.2012.37071
  25. Leszczynska, A., Njuguna, J., Pielichowski, K. and Banerjee, J.R. (2007), "Polymer/montmorillonite nanocomposites with improved thermal properties: Part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes", Thermochim. Acta., 454, 1-22. https://doi.org/10.1016/j.tca.2006.11.003
  26. Madbouly, S., Zhang, C. and Kessler, M.R. (2015), Bio-based Plant Oil Polymers and Composites, Elsevier, Oxford, UK.
  27. Malshe, V.C. and Sikchi, M. (2008), Basics of Paint Technology Part-II, Antar Prokash Centre for Yoga, Hardwar, India.
  28. Ogunniyi, D.S. (2006), "Castor oil: A vital industrial raw material", Bioresource. Technol., 97, 1086-1091. https://doi.org/10.1016/j.biortech.2005.03.028
  29. Pandian, N.S. and Krishna, K.C. (2003), "The pozzolanic effect of fly ash on the California bearing ratio behaviour of black cotton soil", J. Test. Evaluat., 31, 479-485.
  30. Park, J.H., Lee, H.M., Chin, I.J., Choi, H.J., Kim, H.K. and Kang, W.G. (2008), "Intercalated polypropylene/clay nanocomposite and its physical characteristics", J. Phys. Chem. Solid., 69, 1375-1378. https://doi.org/10.1016/j.jpcs.2007.10.048
  31. Petrovic, Z.S. (2008), "Polyurethanes from vegetable oils", Polym. Rev., 48, 109-155. https://doi.org/10.1080/15583720701834224
  32. Pramanik, M., Srivastava, S.K., Samantaray, B.K. and Bhowmick, A.K. (2003), "EVA/clay nanocomposite by solution blending: Effect of aluminosilicate layers on mechanical and thermal properties", Macromol. Res., 11, 260-266. https://doi.org/10.1007/BF03218362
  33. Ramos, A.D., Da Costa, H.M., Soares, V.L.P. and Nascimento, R.S.V. (2005), "Hybrid composites of epoxy resin modified with carboxyl terminated butadiene acrilonitrile copolymer and fly ash microspheres", Polym. Test., 24, 219-226. https://doi.org/10.1016/j.polymertesting.2004.08.007
  34. Satapathy, S., Nando, G.B., Nag, A. and Raju, K.V.S.N. (2013), "HDPE-fly ash/nano fly ash composites", J. App. Polym. Sci., 130, 4558-4567.
  35. Thakur, S. and Karak, N. (2013), "Castor oil-based hyperbranched polyurethanes as advanced surface coating materials", Prog. Org. Coat., 76, 157-164. https://doi.org/10.1016/j.porgcoat.2012.09.001
  36. Umare, S.S. and Chandure, A.S. (2008), "Synthesis, characterization and biodegradation studies of poly (ester urethane)s", Chem. Eng. J., 142, 65-77. https://doi.org/10.1016/j.cej.2007.11.017

Cited by

  1. Experimental design approach for ultra-fast nickel removal by novel bio-nanocomposite material vol.10, pp.1, 2021, https://doi.org/10.12989/anr.2021.10.1.077