DOI QR코드

DOI QR Code

Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression

  • Zhang, Wengang (Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Ministry of Education) ;
  • Goh, Anthony T.C. (School of Civil and Environmental Engineering, Nanyang Technological University)
  • 투고 : 2015.04.02
  • 심사 : 2015.12.14
  • 발행 : 2016.03.25

초록

Simplified techniques based on in situ testing methods are commonly used to assess seismic liquefaction potential. Many of these simplified methods were developed by analyzing liquefaction case histories from which the liquefaction boundary (limit state) separating two categories (the occurrence or non-occurrence of liquefaction) is determined. As the liquefaction classification problem is highly nonlinear in nature, it is difficult to develop a comprehensive model using conventional modeling techniques that take into consideration all the independent variables, such as the seismic and soil properties. In this study, a modification of the Multivariate Adaptive Regression Splines (MARS) approach based on Logistic Regression (LR) LR_MARS is used to evaluate seismic liquefaction potential based on actual field records. Three different LR_MARS models were used to analyze three different field liquefaction databases and the results are compared with the neural network approaches. The developed spline functions and the limit state functions obtained reveal that the LR_MARS models can capture and describe the intrinsic, complex relationship between seismic parameters, soil parameters, and the liquefaction potential without having to make any assumptions about the underlying relationship between the various variables. Considering its computational efficiency, simplicity of interpretation, predictive accuracy, its data-driven and adaptive nature and its ability to map the interaction between variables, the use of LR_MARS model in assessing seismic liquefaction potential is promising.

키워드

참고문헌

  1. Andrus, R.D. and Stokoe, K.H. (2000), "Liquefaction resistance of soils from shear-wave velocity", J. Geotech. Geoenviron., 126(11), 1015-1025. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1015)
  2. Atign, E. and Byrne, P.M. (2004), "Liquefaction flow of submarine slopes under partially undrained conditions: an effective stress approach", Can. Geotech. J., 41(1), 154-165. https://doi.org/10.1139/t03-079
  3. Attoh-Okine, N.O., Cooger, K. and Mensah, S. (2009), "Multivariate adaptive regression spline (MARS) and hinged hyper planes (HHP) for doweled pavement performance modeling", Constr. Build. Mater., 23(9), 3020-3023. https://doi.org/10.1016/j.conbuildmat.2009.04.010
  4. Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984), Classification and Regression Trees, Wadsworth & Brooks, Monterey, CA, USA.
  5. Cetin, K.O., Seed, R.B., Der Kiureghian, A.K., Tokimatsu, K., Harder, L.F. Jr., Kayen, R.E. and Moss, R.E.S. (2004), "Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential", J. Geotech. Geoenviron., 130(12), 1314-1340. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1314)
  6. Chen, Y., Liu, H. and Wu, H. (2013), "Laboratory study on flow characteristic of liquefied and postliquefied sand", Eur. J. Environ. Civil Eng., 17, 23-32. https://doi.org/10.1080/19648189.2013.834583
  7. Chen, Y., Xu, C., Liu, H. and Zhang, W. (2015), "Physical modeling of lateral spreading induced by inclined sandy foundation in the state of zero effective stress", Soil Dyn. Earthq. Eng., 76, 80-85. https://doi.org/10.1016/j.soildyn.2015.04.001
  8. Chern, S.G., Lee, C.Y. and Wang, C.C. (2008), "CPT-based liquefaction assessment by using fuzzy-neural network", J. Mar. Sci. Technol., 16(2), 139-148.
  9. Duman, E.S., Ikizier, S.B., Angin, Z. and Demir, G. (2014), "Assessment of liquefaction potential of the Erzincan, Eastern Turkey", Geomech. Eng., Int. J., 7(6), 589-612. https://doi.org/10.12989/gae.2014.7.6.589
  10. Friedman, J.H. (1989), "Regularized discriminant analysis", J. Am. Stat. Assoc., 84(405), 165-175. https://doi.org/10.1080/01621459.1989.10478752
  11. Friedman, J.H. (1991), "Multivariate adaptive regression splines", Ann. Stat.,19, 1-141. https://doi.org/10.1214/aos/1176347963
  12. Goh, A.T.C. (2002), "Probabilistic neural network for evaluating seismic liquefaction potential", Can. Geotech. J., 39(1), 219-232. https://doi.org/10.1139/t01-073
  13. Goh, A.T.C. and Zhang, W.G. (2014), "An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines", Eng. Geol., 170, 1-10. https://doi.org/10.1016/j.enggeo.2013.12.003
  14. Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of Statistical Learning: Data Mining, Inference and Prediction, (2nd Edition), Springer-Verlag, New York, NY, USA.
  15. Jekabsons, G. (2010), VariReg: A Software Tool for Regression Modelling using Various Modeling Methods, Riga Technical University, Latvia. URL: http://www.cs.rtu.lv/jekabsons/
  16. Juang, C.H., Rosowsky, D.V. and Tang, W.H. (1999), "Reliability-based method for assessing liquefaction potential of soils", J. Geotech. Geoenviron., 125(8), 684-689. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:8(684)
  17. Juang, C.H., Yuan, H., Lee, D.H. and Lin, P.S. (2003), "Simplified cone penetration test-based method for evaluating liquefaction resistance of soils", J. Geotech. Geoenviron., 129(1), 66-80. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:1(66)
  18. Lade, P.V. and Yamamuro, J.A. (2011), "Evaluation of static liquefacion potential of silty sand slopes", Can. Geotech. J., 48(2), 247-264. https://doi.org/10.1139/T10-063
  19. Lai, S.Y., Hsu, S.C. and Hsieh, M.J. (2004), "Discriminant model for evaluating soil liquefaction potential using cone penetration test data", J. Geotech. Geoenviron., 130(12), 1271-1282. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1271)
  20. Lancelot, L., Shahrour, I. and Mahmoud, M.A. (2004), "Instability and static liquefaction on proportional strain paths for sand at low stresses", J. Eng. Mech., 130(11), 1365-1372. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1365)
  21. Lashkari, A. (2012), "Prediction of the shaft resistance of non-displacement piles in sand", Int. J. Numer. Anal. Met., 38(7), 904-931.
  22. Law, K.T., Cao, Y.L. and He, G.N. (1990), "An energy approach for assessing seismic liquefaction potential", Can. Geotech. J., 27(3), 320-329. https://doi.org/10.1139/t90-043
  23. Liao, S.C., Veneziano, D. and Whitman, R.V. (1988), "Regression models for evaluating liquefaction probability", J. Geotech. Eng., 114(4), 389-411. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:4(389)
  24. Liu, H., Chen, Y.M., Yu, T. and Yang, G. (2014), "Seismic analysis of the Zipingpu concrete-faced rockfill dam response to the 2008 Wenchuan, China, Earthquake", J. Perform. Constr. Facil., 29(5), 0401429. DOI: 10.1061/(ASCE)CF.1943-5509.0000506
  25. Marchetti, S. (1982), "Detection of liquefiable sand layers by means of quasi-static penetration tests", Proceedings of the 2nd European Symposium on Penetration Testing, Volume 2, Amsterdam, The Netherlands, May, pp. 458-482.
  26. Mirzahosseini, M., Aghaeifar, A., Alavi, A., Gandomi, A. and Seyednour, R. (2011), "Permanent deformation analysis of asphalt mixtures using soft computing techniques", Expert. Syst. Appl., 38(5), 6081-6100. https://doi.org/10.1016/j.eswa.2010.11.002
  27. Moss, R.E.S., Seed, R.B., Kayen, R.E., Stewart, J.P., Der Kiureghian, A.K. and Cetin, K.O. (2006), "CPTbased probabilistic and deterministic assessment of in situ seismic soil liquefaction potential", J. Geotech. Geoenviron., 132(8), 1032-1051. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:8(1032)
  28. Muduli, P.K. and Das, S.K. (2014a), "CPT-based seismic liquefaction potential evaluation using multi-gene genetic programming approach", Ind. Geotech. J., 44(1), 86-93. https://doi.org/10.1007/s40098-013-0048-4
  29. Muduli, P.K. and Das, S.K. (2014b), "Evaluation of liquefaction potential of soil based on standard penetration test using multi-gene genetic programming model", Acta. Geophys., 62(3), 529-543. https://doi.org/10.2478/s11600-013-0181-6
  30. Muduli, P.K., Das, S.K. and Bhattacharya, S. (2014), "CTP-based probabilistic evaluation of seismic soil liquefaction potential using multi-gene genetic programming", Georisk, 8(1), 14-28. https://doi.org/10.1080/17499518.2013.845720
  31. Robertson, P.K. (1990), "Soil classification using the cone penetration test",Can.Geotech. J., 27(1), 151-158. https://doi.org/10.1139/t90-014
  32. Robertson, P.K. and Wride, C.E. (1998), "Evaluating cyclic liquefaction potential using the cone penetration test", Can. Geotech. J., 35(3), 442-459. https://doi.org/10.1139/t98-017
  33. Samui, P. (2011), "Determination of ultimate capacity of driven piles in cohesionless soil: A multivariate adaptive regression spline approach", Int. J. Numer. Anal. Method. Geomech., 36(11), 1434-1439. https://doi.org/10.1002/nag.1076
  34. Samui, P. and Karup, P. (2011), "Multivariate adaptive regression spline and least square support vector machine for prediction of undrained shear strength of clay", Int. J. Appl. Metaheur. Comput., 3(2), 33-42. https://doi.org/10.4018/jamc.2012040103
  35. Seed, H.B. and Idriss, I.M. (1971), "Simplified procedure for evaluating soil liquefaction potential", Soil Mech. Found. Eng., 97(9), 1249-1273.
  36. Seed, H.B., Tokimatsu, K., Harder, L.F. and Chung, R. (1985), "Influence of SPT procedures in soil liquefaction resistance evaluations", J. Geotech. Eng., 111(12), 861-878.
  37. Specht, D. (1990), "Porbabilistic neural networks", Neural Networks, 3(1), 109-118. https://doi.org/10.1016/0893-6080(90)90049-Q
  38. Stark, T.D. and Olson, S.M. (1995), "Liquefaction resistance using CPT and field case histories", J. Geotech. Eng., 121(12), 856-869. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:12(856)
  39. Tosun, H., Seyrek, E., Orhan, A., Savas, H. and Turkoz, M. (2011), "Soil liquefaction potential in Eskisehir, NW Turkey", Nat. Hazard Earth Syst., 11, 1071-1082. https://doi.org/10.5194/nhess-11-1071-2011
  40. Toyota, H., Towhata, I., Imamura, S. and Kudo, K. (2004), "Shaking table tests on flow dynamics in liquefied slope", Soils Found., 44(5), 67-84. https://doi.org/10.3208/sandf.44.5_67
  41. Vapnik, V., Golowich, S. and Smola, A. (1997), "Support vector method for function approximation, regression estimation, and signal processing", Adv. Neural Inform. Process. Syst., 9, 281-287.
  42. Youd, T.L., Idriss, I., Andrus, R., Arango, I., Castro, G., Christian, J., Dobry, R., Finn, W., Harder, L. Jr., Hynes, M., Ishihara, K., Koester, J., Liao, S., Marcuson, W. III, Martin, G., Mitchell, J., Moriwaki, Y., Power, M., Robertson, P., Seed, R. and Stokoe, K. II (2001), "Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils", J. Geotech. Geoenviron., 127(10), 817-833. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)
  43. Zarnani, S., El-Emam, M. and Bathurst, R.J. (2011), "Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests", Geomech. Eng., Int. J., 3(4), 291-321. https://doi.org/10.12989/gae.2011.3.4.291
  44. Zhang, G.Q. (2000), "Neural networks for classification: A survey", IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 30(4), 451-462. https://doi.org/10.1109/5326.897072
  45. Zhang, W.G. and Goh, A.T.C. (2013), "Multivariate adaptive regression splines for analysis of geotechnical engineering systems", Comput. Geotech., 48, 82-95. https://doi.org/10.1016/j.compgeo.2012.09.016
  46. Zhang, W.G. and Goh, A.T.C. (2014), "Multivariate adaptive regression splines model for reliability assessment of serviceability limit state of twin caverns", Geomech. Eng., Int. J., 7(4), 431-458. https://doi.org/10.12989/gae.2014.7.4.431

피인용 문헌

  1. Interactive image segmentation with a regression based ensemble learning paradigm vol.18, pp.7, 2017, https://doi.org/10.1631/FITEE.1601401
  2. Liquefaction maps in Babol City, Iran through probabilistic and deterministic approaches vol.5, pp.1, 2018, https://doi.org/10.1186/s40677-017-0094-9
  3. A study on the liquefaction risk in seismic design of foundations vol.11, pp.6, 2016, https://doi.org/10.12989/gae.2016.11.6.805
  4. Predicting earthquake-induced soil liquefaction based on a hybridization of kernel Fisher discriminant analysis and a least squares support vector machine: a multi-dataset study vol.77, pp.1, 2018, https://doi.org/10.1007/s10064-016-0924-0
  5. Evaluating stability of underground entry-type excavations using multivariate adaptive regression splines and logistic regression vol.70, 2017, https://doi.org/10.1016/j.tust.2017.07.013
  6. A novel hybrid intelligent model of support vector machines and the MultiBoost ensemble for landslide susceptibility modeling pp.1435-9537, 2018, https://doi.org/10.1007/s10064-018-1281-y
  7. Assessment of slope stability using multiple regression analysis vol.13, pp.2, 2016, https://doi.org/10.12989/gae.2017.13.2.237
  8. OCR evaluation of cohesionless soil in centrifuge model using shear wave velocity vol.15, pp.4, 2018, https://doi.org/10.12989/gae.2018.15.4.987
  9. MARS inverse analysis of soil and wall properties for braced excavations in clays vol.16, pp.6, 2016, https://doi.org/10.12989/gae.2018.16.6.577
  10. Improving prediction of soil liquefaction using hybrid optimization algorithms and a fuzzy support vector machine vol.78, pp.7, 2019, https://doi.org/10.1007/s10064-018-01445-3
  11. Critical Distance of the Seismic Waves’ Impact in Disintegration of Rock Blasting vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/5134948
  12. Energy-based evaluation of liquefaction potential of uniform sands vol.17, pp.2, 2016, https://doi.org/10.12989/gae.2019.17.2.145
  13. Soil Liquefaction Assessment Using Soft Computing Approaches Based on Capacity Energy Concept vol.10, pp.9, 2016, https://doi.org/10.3390/geosciences10090330
  14. Evaluation of seismic site classification for Kahramanmaras City, Turkey vol.80, pp.3, 2016, https://doi.org/10.1007/s12665-021-09396-x
  15. Deterministic and probabilistic analysis of tunnel face stability using support vector machine vol.25, pp.1, 2021, https://doi.org/10.12989/gae.2021.25.1.017
  16. Evaluation of geological conditions and clogging of tunneling using machine learning vol.25, pp.1, 2016, https://doi.org/10.12989/gae.2021.25.1.059
  17. Towards a Comprehensive Assessment of Statistical versus Soft Computing Models in Hydrology: Application to Monthly Pan Evaporation Prediction vol.13, pp.17, 2016, https://doi.org/10.3390/w13172451
  18. A hybrid GMDH neural network and logistic regression framework for state parameter-based liquefaction evaluation vol.58, pp.12, 2016, https://doi.org/10.1139/cgj-2020-0686