DOI QR코드

DOI QR Code

Effects of Experimental Warming on Physiological Responses of Four Deciduous Tree Species Seedlings

실외 실험적 온난화 처리에 따른 활엽수 4개 수종 묘목의생리적 반응

  • An, Jiae (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Han, Seung Hyun (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Chang, Hanna (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Park, Min Ji (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Son, Yowhan (Department of Environmental Science and Ecological Engineering, Korea University)
  • 안지애 (고려대학교 환경생태공학과) ;
  • 한승현 (고려대학교 환경생태공학과) ;
  • 장한나 (고려대학교 환경생태공학과) ;
  • 박민지 (고려대학교 환경생태공학과) ;
  • 손요환 (고려대학교 환경생태공학과)
  • Received : 2016.10.10
  • Accepted : 2016.11.08
  • Published : 2016.12.31

Abstract

This study was conducted to investigate the physiological responses of newly-germinated seedlings of Fraxinus rhynchophylla Hance, Zelkova serrata (Thunb.) Makino, Betula costata Trautv. and Quercus variabilis Blume to open-field experimental warming. The seedlings in the warmed plots were warmed with $2.7^{\circ}C$ higher air temperature than those in the control plots using infrared heaters since April, 2015. Physiological responses (stomatal conductance, transpiration rate, chlorophyll content and net photosynthetic rate) to experimental warming varied with the species and the time of the measurement. Stomatal conductance ($mmol{\cdot}m^{-2}{\cdot}s^{-1}$) tended to decrease for F. rhynchophylla (Control: $158.97{\pm}42.76$; Warmed: $42.07{\pm}8.24$), Z. serrata (Control: $170.53{\pm}27.22$; Warmed: $101.17{\pm}42.27$) and B. costata (Control: $249.93{\pm}47.39$; Warmed: $150.73{\pm}26.52$). Transpiration rate ($mmol{\cdot}m^{-2}{\cdot}s^{-1}$) also decreased for F. rhynchophylla (Control: $4.08{\pm}0.62$; Warmed: $1.74{\pm}0.39$), Z. serrata (Control: $4.32{\pm}0.44$; Warmed: $3.24{\pm}1.14$) and B. costata (Control: $6.21{\pm}0.38$; Warmed: $4.66{\pm}0.28$). However, warming exhibited only minimal effects on stomatal conductance and transpiration rate of Q. variabilis seedlings. Chlorophyll content increased by the warming treatment while the effect of warming was not significant on net photosynthetic rate, since the warming treatment had a weak influence for changing net photosynthetic rate.

본 연구는 실외 실험적 온난화 시스템 내에서 적외선등을 이용하여 온난화 처리를 한 다음 발아 당년의 활엽수 4개 수종(물푸레나무, 느티나무, 거제수나무, 굴참나무) 묘목의 생리적 반응을 알아보고자 수행되었다. 적외선등은 2015년 4월부터 가동되었으며, 온난화 처리구 내의 묘목들은 대조구에 비해 $2.7^{\circ}C$ 높은 대기온도 하에서 생육되었다. 기공전도도, 증산속도 및 순광합성률은 동년 7월과 9월에, 엽록소 함량은 7월과 10월에 각각 측정하였다. 온도 증가에 대한 묘목의 생리적 반응은 수종과 측정 시기에 따라 다른 결과를 나타내었다. 즉 기공전도도($mmol{\cdot}m^{-2}{\cdot}s^{-1}$)는 물푸레나무(대조구:$158.97{\pm}42.76$; 온난화 처리구:$42.07{\pm}8.24$), 느티나무(대조구:$170.53{\pm}27.22$; 온난화 처리구: $101.17{\pm}42.27$), 거제수나무(대조구:$249.93{\pm}47.39$; 온난화 처리구:$150.73{\pm}26.52$)에서 온난화 처리에 의해 감소하였다. 그리고 증산속도($mmol{\cdot}m^{-2}{\cdot}s^{-1}$)도 물푸레나무(대조구:$4.08{\pm}0.62$; 온난화 처리구:$1.74{\pm}0.39$), 느티나무(대조구:$4.32{\pm}0.44$; 온난화 처리구:$3.24{\pm}1.14$), 거제수나무(대조구:$6.21{\pm}0.38$; 온난화 처리구:$4.66{\pm}0.28$)에서 대조구에 비해 온난화 처리구에서 낮은 값을 나타내었다. 한편, 굴참나무의 경우 기공전도도와 증산속도의 처리 간 차이가 유의하지 않았다. 엽록소 함량은 대부분의 수종에서 온난화 처리에 의해 증가하였으나, 순광합성률은 모든 수종에서 처리 간의 차이가 통계적으로 유의하지 않았다. 이는 온난화 처리의 영향이 미미하여 순광합성률의 변화에까지 영향을 미치지 못하였기 때문인 것으로 판단된다.

Keywords

References

  1. An, J., Chang, H., Park, M.J., Han, S.H., Hwang, J., Cho, M.S., and Son, Y. 2016. Effect of experimental warming on physiological and growth responses of Larix kaempferi seedlings. Journal of Climate Change Research 7(1): 77-84. (In Korean) https://doi.org/10.15531/ksccr.2016.7.1.77
  2. Arend, M., Kuster, T., Gunthardt-Goerg, M.S., and Dobbertin, M. 2011. Provenance-specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiology 31(3): 287-297. https://doi.org/10.1093/treephys/tpr004
  3. Barnes, J.D., Balaguer, L., Manrique, E., Elvira, S., and Davison, A.W. 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany 32(2): 85-100. https://doi.org/10.1016/0098-8472(92)90034-Y
  4. Chung, H., Muraoka, H., Nakamura, M., Han, S., Muller, O., and Son, Y. 2013. Experimental warming studies on tree species and forest ecosystems: a literature review. Journal of Plant Research 126(4): 447-460. https://doi.org/10.1007/s10265-013-0565-3
  5. Collatz, G.J., Ball, J.T., Grivet, C., and Berry, J.A. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural and Forest Meteorology 54(2): 107-136. https://doi.org/10.1016/0168-1923(91)90002-8
  6. Cunningham, S.C. and Read, J. 2002. Comparison of temperate and tropical rainforest tree species: photosynthetic responses to growth temperature. Oecologia 133(2): 112-119. https://doi.org/10.1007/s00442-002-1034-1
  7. Danby, R.K. and Hik, D.S. 2007. Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline. Global Change Biology 13(2): 437-451. https://doi.org/10.1111/j.1365-2486.2006.01302.x
  8. Farquhar, G.D. and Sharkey, T.D. 1982. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology 33(1): 317-345. https://doi.org/10.1146/annurev.pp.33.060182.001533
  9. Fisichelli, N.A., Frelich, L.E., and Reich, P.B. 2012. Sapling growth responses to warmer temperatures 'cooled' by browse pressure. Global Change Biology 18(11): 3455-3463. https://doi.org/10.1111/j.1365-2486.2012.02785.x
  10. Fisichelli, N.A., Frelich, L.E., and Reich, P.B. 2014a. Temperate tree expansion into adjacent boreal forest patches facilitated by warmer temperatures. Ecography 37(2): 152-161. https://doi.org/10.1111/j.1600-0587.2013.00197.x
  11. Fisichelli, N.A., Wright, A., Rice, K., Mau, A., Buschena, C., and Reich, P.B. 2014b. First-year seedlings and climate change: species-specific responses of 15 North American tree species. Oikos 123(11): 1331-1340. https://doi.org/10.1111/oik.01349
  12. Fracheboud, Y., Luquez, V., Björkén, L., Sjödin, A., Tuominen, H., and Jansson, S. 2009. The control of autumn senescence in European aspen. Plant Physiology 149(4): 1982-1991. https://doi.org/10.1104/pp.108.133249
  13. Fukatsu, E., Isoda, K., Hirao, T., Takahashi, M., and Watanabe, A. 2005. Development and characterization of simple sequence repeat DNA markers for Zelkova serrata. Molecular Ecology Notes 5(2): 378-380. https://doi.org/10.1111/j.1471-8286.2005.00933.x
  14. Han, S.H., Kim, D.H., Kim, G.N., Lee, J.C., and Yun, C.W. 2012. Changes on initial growth and physiological characteristics of Larix kaempferi and Betula costata seedlings under elevated temperature. Korean Journal of Agricultural and Forest Meteorology 14(2): 63-70. (In Korean) https://doi.org/10.5532/KJAFM.2012.14.2.063
  15. Han, S., An, J., Yoon, T.K., Yun, S.J., Hwang, J., Cho, M.S., and Son, Y. 2014. Species-specific growth responses of Betula costata, Fraxinus rhynchophylla, and Quercus variabilis seedlings to open-field artificial warming. Korean Journal of Agricultural and Forest Meteorology 16(3): 217-224. (In Korean)
  16. Han, S., Lee, S.J., Yoon, T.K., Han, S.H., Lee, J., Kim, S., Hwang, J., Cho, M.S., and Son, Y. 2015. Species-specific growth and photosynthetic responses of first-year seedlings of four coniferous species to open-field experimental warming. Turkish Journal of Agriculture and Forestry 39(2): 342-349 https://doi.org/10.3906/tar-1408-117
  17. Hiscox, J.T. and Israelstam, G.F. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57(12): 1332-1334. https://doi.org/10.1139/b79-163
  18. Intergovernmental Panel on Climate Change (IPCC). 2014. Climate Change 2014: Synthesis Report. Intergovernmental Panel on Climate Change. UK.
  19. Kim, G.T. 2003. Ecological forest management and reforestation problem - Comparison of diameter increment of Fraxinus rhynchophylla between artificial, natural and coppice forest. Korean Journal of Environment and Ecology 17(2): 105-111. (In Korean)
  20. Kolb, P.F. and Robberecht, R. 1996. High temperature and drought stress effects on survival of Pinus ponderosa seedlings. Tree Physiology 16(8): 665-672. https://doi.org/10.1093/treephys/16.8.665
  21. Korea Forest Service. 2012. Guidelines for seed and seedling management. Korea Forest Service, Korea. (In Korean)
  22. Lewis, J.D., Lucash, M., Olszyk, D., and Tingey, D.T. 2001. Seasonal patterns of photosynthesis in Douglas fir seedlings during the third and fourth year of exposure to elevated $CO_2$ and temperature. Plant, Cell and Environment 24(5): 539-548. https://doi.org/10.1046/j.1365-3040.2001.00700.x
  23. Matala, J., Ojansuu, R., Peltola, H., Raitio, H., and Kellomaki, S. 2006. Modelling the response of tree growth to temperature and $CO_2$ elevation as related to the fertility and current temperature sum of a site. Ecological Modelling 199(1): 39-52. https://doi.org/10.1016/j.ecolmodel.2006.06.009
  24. Niu, S., Li, Z., Xia, J., Han, Y., Wu, M., and Wan, S. 2008. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China. Environmental and Experimental Botany 63(1): 91-101. https://doi.org/10.1016/j.envexpbot.2007.10.016
  25. Noh, N.J., Lee, S.J., Jo, W., Han, S., Yoon, T.K., Chung, H., Muraoka, H., and Son, Y. 2016. Effects of experimental warming on soil respiration and biomass in Quercus variabilis Blume and Pinus densiflora Sieb. et Zucc. Seedlings. Annals of Forest Science 73(2): 533-545. https://doi.org/10.1007/s13595-016-0547-4
  26. Novick, K.A., Ficklin, D.L., Stoy, P.C., Williams, C.A., Bohrer, G., Oishi, A.C., Papuga, S.A., Blanken, P.D., Noormets, A., Sulman, B.N., Scott, R.L., Wang, L., and Phillips, R.P. 2016. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change 6(11): 1023-1027. https://doi.org/10.1038/nclimate3114
  27. Saxe, H., Cannell, M.G., Johnsen, O., Ryan, M.G., and Vourlitis, G. 2001. Tree and forest functioning in response to global warming. New Phytologist 149(3): 369-399. https://doi.org/10.1046/j.1469-8137.2001.00057.x
  28. Sendall, K.M., Reich, P.B., Zhao, C., Jihua, H., and Wei, X.O. 2004. Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Global Change Biology 21(3): 1342-1357. https://doi.org/10.1111/gcb.12781
  29. Scholze, M., Knorr, W., Arnell, N.W., and Prentice, I.C. 2006. A climate-change risk analysis for world ecosystems. Proceedings of the National Academy of Sciences 103(35): 13116-13120. https://doi.org/10.1073/pnas.0601816103
  30. Song, K.S., Cha, Y.G., Choi, J.Y. and Kim, J.J. 2012. Comparison of growth characteristics of 1- and 2-year-old bare root and container seedling of Chamaecyparis obtusa. Journal of Korean Forest Society 101(2): 317-323. (In Korean)
  31. Sung, H.I., Song, K.S., Cha, Y.G., and Kim, J.J. 2011. Characteristics of growth and seedling quality of 1-year-old container seedlings of Quercus myrsinaefolia by shading and fertilizing treatment. Journal of Korean Forest Society 100(4): 598-608. (In Korean)
  32. Walck, J.L., Hidayati, S.N., Dixon, K.W., Thompson, K., and Poschilod, P. 2011. Climate change and plant regeneration from seed. Global Change Biology 17(6): 2145-2161. https://doi.org/10.1111/j.1365-2486.2010.02368.x
  33. Wu, Z., Dijkstra, P., Koch, G.W., Penuelas, J., and Hungate, B.A. 2011. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology 17(2): 927-942. https://doi.org/10.1111/j.1365-2486.2010.02302.x
  34. Xu, Z., Hu, T., and Zhang, Y. 2012. Effects of experimental warming on phenology, growth and gas exchange of treeline birch (Betula utilis) saplings, Eastern Tibetan Plateau, China. European Journal of Forest Research 131(3): 811-819. https://doi.org/10.1007/s10342-011-0554-9
  35. Zhao, C. and Liu, Q. 2009. Growth and photosynthetic responses of two coniferous species to experimental warming and nitrogen fertilization. Canadian Journal of Forest Research 39(1): 1-11. https://doi.org/10.1139/X08-152

Cited by

  1. Abnormal Shoot Responses of Pinus densiflora Seedlings to Open-field Experimental Warming and Precipitation Manipulation vol.10, pp.1, 2016, https://doi.org/10.15531/ksccr.2019.10.1.1
  2. Stormwater Runoff Treatment Using Rain Garden: Performance Monitoring and Development of Deep Learning-Based Water Quality Prediction Models vol.13, pp.24, 2016, https://doi.org/10.3390/w13243488