DOI QR코드

DOI QR Code

A Molecular Dynamics Simulation Study of Hydroxyls in Dioctahedral Phyllosilicates

분자동역학 시뮬레이션을 이용한 이팔면체 점토광물 수산기 연구

  • Son, Sangbo (Department of Geology, Kangwon National University) ;
  • Kwon, Kideok D. (Department of Geology, Kangwon National University)
  • 손상보 (강원대학교 자연과학대학 지질학과) ;
  • 권기덕 (강원대학교 자연과학대학 지질학과)
  • Received : 2016.09.20
  • Accepted : 2016.12.20
  • Published : 2016.12.30

Abstract

Clay minerals are a major player to determine geochemical cycles of trace metals and carbon in the critical zone which covers the atmosphere down to groundwater aquifers. Molecular dynamics (MD) simulations can examine the Earth materials at an atomic level and, therefore, provide detailed fundamental-level insights related to physicochemical properties of clay minerals. In the current study, we have applied classical MD simulations with clayFF force field to dioctahedral clay minerals (i.e., gibbsite, kaolinite, and pyrophyllite) to analyze and compare structural parameters (lattice parameter, atomic pair distance) with experiments. We further calculated vibrational power spectra for the hydroxyls of the minerals by using the MD simulations results. The MD simulations predicted lattice parameters and interatomic distances respectively deviated less than 0.1~3.7% and 5% from the experimental results. The stretching vibrational wavenumber of the hydroxyl groups were calculated $200-300cm^{-1}$ higher than experiment. However, the trends in the frequencies among different surface hydroxyl groups of each mineral was consistent with experimental results. The angle formed by the surface hydroxyl group with the (001) plane and hydrogen bond distances of the surface hydroxyls were consistent with experimental result trends. The inner hydroxyls, however, showed results somewhat deviated from reported data in the literature. These results indicate that molecular dynamics simulations with clayFF can be a useful method in elucidating the roles of surface hydroxyl groups in the adsorption of metal ions to clay minerals.

점토광물은 대기부터 지하수에 이르는 크리티컬존(critical zone) 영역에서 금속과 탄소 순환을 결정짓는 역할을 한다. 계산광물학 연구방법 중에 하나인 분자동역학(molecular dynamics) 시뮬레이션은 지구물질을 원자단위로 계산하기 때문에, 점토광물의 물리화학적 현상들에 대해 원자수준의 자세한 정보를 제공할 수 있다. 이번 연구에서는 clayFF 힘 장(force field)을 사용한 분자동역학 시뮬레이션을 이팔면체 점토광물인 깁사이트(gibbsite, $Al(OH)_3$), 카올리나이트(kaolinite, $Al_2Si_2O_5(OH)_4$), 파이로필라이트(pyrophyllite, $Al_2Si_4O_{10}(OH)_2$)에 적용하여 300 K, 1기압조건에서 각 광물이 가지는 격자상수와 원자간 거리를 계산하고 실험결과와 비교하였다. 더불어 수산기의 방향성 및 수소결합의 양상 그리고 파워스펙트럼(power spectrum)을 추가적으로 계산하였다. 계산 결과, 격자상수는 기존의 실험결과와 약 0.1~3.7% 미만의 오차율을 보였으며, 원자간 거리는 실험결과와 약 5% 미만의 차이를 가졌다. 깁사이트나 카올리나이트의 팔면체층 표면에 존재하는 수산기가 가지는 신축진동파수(stretching vibrational wavenumber)는 실험값 보다 약 $200-300cm^{-1}$ 높게 계산되었지만, 팔면체층 표면에 존재하는 수산기들의 상대적 크기의 경향은 기존 실험 결과와 일치하였다. 팔면체층 표면의 수산기가 (001)면과 이루는 각도도 기존 실험결과와 상당부분 일치한 반면에 내부 수산기의 경우는 다소 차이를 보였다. ClayFF를 사용한 분자동역학 시뮬레이션 연구 방법은 이팔면체 점토광물 표면 내(층간) 금속이온 흡착에 대한 수산기의 역할을 규명하는데 유용한 연구방법이 될 수 있음을 시사한다.

Keywords

References

  1. Accelrys, Inc. (2016) Forcite module. Materials Studio. San Diego.
  2. Bish, D. L. (1993) Rietveld refinement of the kaolinite structure at 1.5 K. Clays and Clay Minerals, 41, 738-744. https://doi.org/10.1346/CCMN.1993.0410613
  3. Bougeard, D., Smirnov, K. S., and Geidel, E. (2000) Vibrational spectra and structure of kaolinite: A computer simulation study. The Journal of Physical Chemistry B, 104, 9210-9217. https://doi.org/10.1021/jp0013255
  4. Brantley, S. L., White, T. S., White, A. F., Sparks, D., Richter, D., Pregitzer, K., Derry, L., Chorover, J., Chadwick, O., April, R., Anderson, S., and Amundson, R., (2006) Frontiers in Exploration of the Critical Zone: Report of a workshop sponsored by the National Science Foundation (NSF), An NSF-Sponsored Workshop, Newark, DE, October 24-26, 30p.
  5. Cygan, R. T., Nagy, K. L., and Brady, P. V. (1998) Molecular models of cesium sorption on kaolinite. Adsorption of Metals by Geomedia, Academic, 383-399.
  6. Cygan, R. T., Liang, J., and Andrey, G. K. (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physcal Chemistry B, 108, 1255-1266. https://doi.org/10.1021/jp0363287
  7. Ewald, P. P. (1921) The computation of optical and electrostatic lattice potentials Annals of Physics, 64, 253 (in German without English abstract).
  8. Farmer, V. T. and Russell, J. D. (1964) The infra-red spectra of layer silicates. Spectrochimica Acta, 20, 1149-1173. https://doi.org/10.1016/0371-1951(64)80165-X
  9. Frenkel, D. and Smit, B. (2002) Understanding Molecular Simulation: From Algorithms to Applications (2nd ed.). Academic, San Diego, CA.
  10. Frost, R. L., Kloprogge, J. T., Russell, S. C., and Szetu, J. L. (1999) Vibrational spectroscopy and dehydroxylation of aluminum (oxo) hydroxides: gibbsite. Applied Spectroscopy, 53, 423-434. https://doi.org/10.1366/0003702991946884
  11. Gale, J. D., Rohl, A. L., Milman, V., and Warren, M. C. (2001) An ab initio study of the structure and properties of aluminum hydroxide: gibbsite and bayerite. The Journal of Physical Chemistry B, 105, 10236-10242. https://doi.org/10.1021/jp011795e
  12. Giese, R. F. (1973) Hydroxyl orientation in pyrophyllite. Nature, 241, 151.
  13. González, M. A. (2011) Force fields and molecular dynamics simulations. Collection SFN, 12, 169-200. https://doi.org/10.1051/sfn/201112009
  14. Greathouse, J. A., Durkin, J. S., Larentzos, J. P., and Cygan, R. T. (2009) Implementation of a Morse potential to model hydroxyl behavior in phyllosilicates. Journal of Chemical Physics, 130, 134713. https://doi.org/10.1063/1.3103886
  15. Halgren, T. A. (1992) The representation of van der Waals (vdW) interactions In molecular mechanics force fields: potential form, combination rules, and vdW parameters. Journal of the American Chemical Society, 114, 7827-7843. https://doi.org/10.1021/ja00046a032
  16. Hansen, J. P. and McDonald, I. R. (1990) Theory of Simple Liquids: With Applications to Soft Matter. Academic.
  17. Hawkins, R. K. and Egelstaff, P. A. (1980). Interfacial water structure in montmorillonite from neutron diffraction experiments. Clays and Clay Minerals, 28, 19-28. https://doi.org/10.1346/CCMN.1980.0280103
  18. Johnston, C. T., Agnew, S. F., and Bish, D. L. (1990) Polarised single-crystal fourier-transform infra-red microscopy of Ouray dickite and Keokuk kaolinite. Clays and Clay Minerals, 38, 573-583. https://doi.org/10.1346/CCMN.1990.0380602
  19. Jones, J. E. (1924) On the determination of molecular fields. II. From the equatio n of state of a gas. The Royal Society of London A: Mathematical, Phys ical and Engineering Sciences. 106, 463-477. https://doi.org/10.1098/rspa.1924.0082
  20. Karaborni, S., Smit, B., Heidug, W., Urai, J., and Van Oort, E. (1996) The swelling of clays: molecular simulations of the hydration of montmorillonite. Science, 271, 1102-1104. https://doi.org/10.1126/science.271.5252.1102
  21. Lee, J. H. and Guggenheim, S. (1981) Single crystal X-ray refinement of pyrophyllite-1tc. American Mineralogist, 66, 350-357.
  22. National Research Council. (2001) Basic Research Opportunities in Earth Science. The National Academies Press, Washington, DC, 154p.
  23. Nosé, S. (1991) Constant temperature molecular dynamics methods. Progress of Theoretical Physics Supplement, 103, 1-46. https://doi.org/10.1143/PTPS.103.1
  24. Parrinello, M. and Rahman, A. (1981) Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52, 7182-7190. https://doi.org/10.1063/1.328693
  25. Refson, K., Park, S. H., and Sposito, G. (2003) Ab initio computational crystallography of 2: 1 clay minerals: 1. Pyrophyllite-1Tc. The Journal of Physical Chemistry B, 107, 13376-13383. https://doi.org/10.1021/jp0347670
  26. Ruan, H. D., Frost, R. L., and Kloprogge, J. T. (2001) Comparison of Raman spectra in characterizing gibbsite, bayerite, diaspore and boehmite. Journal of Raman Spectroscopy, 32, 745-750. https://doi.org/10.1002/jrs.736
  27. Saalfeld, H. and Wedde, M. (1974) Refinement of the crystal structure of gibbsite, $Al(OH)_3$ Zeitschrift fur Kristallographie-Crystalline Materials, 139, 129-135.
  28. Sposito, G., Skipper, N. T., Sutton, R., Park, S. H., Soper, A. K., and Greathouse, J. A. (1999) Surface geochemistry of the clay minerals. Proceedings of the National Academy of Sciences, 96, 3358-3364. https://doi.org/10.1073/pnas.96.7.3358
  29. Verlet, L. (1967) Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical review, 159, 98. https://doi.org/10.1103/PhysRev.159.98
  30. Wang, J., Kalinichev, A. G., and Kirkpatrick, R. J. (2006) Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study. Geochimica et cosmochimica acta, 70, 562-582. https://doi.org/10.1016/j.gca.2005.10.006
  31. White, C. E., Provis, J. L., Riley, D. P., Kearley, G. J., and van Deventer, J. S. (2009) What is the structure of kaolinite? Reconciling theory and experiment. Journal of Physical Chemistry B, 113, 6756-6765.
  32. Yi, Y. S. and Lee, S. K. (2014) Quantum Chemical Calculations of the Effect of Si-O Bond Length on X-ray Raman Scattering Features for $MgSiO_3$ Perovskite. Journal of the Mineralogical Society of Korea, 27, 1-15 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2014.27.1.11