DOI QR코드

DOI QR Code

Lithium Extraction from Smectitic Clay Occurring in Lithium-bearing Boron Deposits in Turkey

터키 리튬 함유 붕소광상에서 산출하는 스멕타이틱-점토로부터의 리튬 추출

  • Lee, Won-Jong (Korea Institute of Geoscience and Mineral Resources) ;
  • Yoon, Soh-joung (Korea Institute of Geoscience and Mineral Resources) ;
  • Chon, Chul-Min (Korea Institute of Geoscience and Mineral Resources) ;
  • Heo, Chul-Ho (Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Gill-Jae (Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Bum-Han (Korea Institute of Geoscience and Mineral Resources) ;
  • Cicek, Murat (General Directorate of Mineral Research and Exploration)
  • Received : 2016.11.29
  • Accepted : 2016.12.01
  • Published : 2016.12.30

Abstract

Smectitic clays, occurring in Kırka and Bigadiç boron evaporite deposits formed in Miocene playa lake environment in Turkey, contain $LiO_2$ 0.02-0.21% and 0.16-0.30%, respectively, and boron tailings are also reported to contain $LiO_2$ 0.04-0.26%. Lithium in smectitic clays was identified to be retained in hectorite. The XRD results revealed that hectorite was contained in 25.7% and 79.7% of Kırka and Bigadiç deposit samples respectively. In this study, we selected a clay sample from each deposit with lithium content of ~0.18% and estimated extractable lithium by acid treatment and roasting method commercially applicable to lithium resources, such as lepidolite and hectorite. When 1 g of crushed clay (particle size less than $74{\mu}m$) was reacted with 200 mL of 0.25 M HCl solution, the amount of lithium dissolved increased with the increase of reaction time up to 10 hours for both samples. Reaction time longer than 10 hours did not significantly increased the amount of lithium dissolved. After 10 hours of reaction, 89% of lithium in the clay sample from the Kırka deposit was dissolved, while 71% of lithium was dissolved from the Bigadiç deposit tailing sample. 87% of lithium in the clay sample from the Kırka deposit was extracted and 82% of lithium was extracted from the Bigadiç deposit tailing sample by the roasting extraction method, where clays were leached after a thermal treatment at $1,100^{\circ}C$ for 2 hours with $CaCO_3$ and $CaSO_4$.

신제3기 마이오세(Miocene)의 플라야호(playa lake) 환경에서 형성된 증발형 붕소 광상인 터키의 비가디치(Bigadiç) 광상과 크르카(Kırka) 광상에서 산출되는 점토에서 각각 $LiO_2$가 0.02-0.21%, 0.16-0.30% 함유되어 있다. 이는 점토에 리튬을 함유한 헥토라이트(hectorite)가 함유되어 있기 때문으로 확인되었으며 붕소 광석을 처리하고 남은 광미도 $LiO_2$ 0.04-0.26% 포함하고 있는 것으로 보고된다. 약 0.18%의 리튬 함량을 보이는 비가디치 및 크르카 광상 점토 시료 각 1개에 대하여 추출 가능한 리튬의 양을 알아보았다. 본 연구의 XRD 분석 결과 크르카 광상의 시료에는 25.7%, 비가디치 시료에는 79.7%의 헥토라이트가 함유되어 있었다. 이들 점토가 리튬 광석으로 활용될 수 있는지 알아보기 위해 (1) 산 처리 용출 및 (2) 열처리 침출 방법으로 리튬을 추출하였다. 두 광상 시료 모두 0.25 M 염산과의 반응시간에 따라 용출되는 리튬의 양이 증가하였으나 10시간 이상 반응시켰을 때는 용출되는 리튬의 양이 더 이상 증가하지 않았다. 10시간 이상 반응시켰을 때, 크르카 광상 점토 시료에서 89%의 리튬이 용출되었으며 비가디치 광상 점토 시료에서 71%의 리튬이 용출되었다. $CaCO_3$$CaSO_4$와 함께 $1,100^{\circ}C$에서 2시간 열처리하여 크르카 광상 시료에서 87%, 비가디치 광상 시료에서 82%의 리튬을 추출하였다. 크르카 광상의 점토 시료는 산 처리로 더 많은 양의 리튬을 추출할 수 있었으며 비가디치 광상의 시료는 열처리 방법으로 리튬을 더 많이 추출할 수 있었다.

Keywords

References

  1. Bickmore, B. R., Bosbach, D., Hochella, M. F., Charlet, L., and Rufe, E. (2001) In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms. American Mineralogist, 86(4), 411-423. https://doi.org/10.2138/am-2001-0404
  2. Brindley, G.W. and Brown, G. (1980) Crystal Structures of Clay Minerals and Their X-ray Identification. Mineralogical Society, London, 495p.
  3. Buyukburc, A. (2003) Robust Design of Lithium Extraction from Boron Clays by Using Statistical Design and Analysis of Experiments. M.S. Thesis, Middle East Technical University, 143p.
  4. Crocker, L. and Lien, R. H. (1988) Lithium and its recovery from low-grade nevada clays. US Department of the Interior, Bureau of Mines. 37p.
  5. Helvaci, C. and Alaca, A. (1991a) Geology and mineralogy of the Bigadic borate deposits and vicinity. Mineral Res. Expl. Bull., 113, 31-63.
  6. Helvaci, C. and Alaca, A. (1991b) Bigadic borat yataklari ve cevresinin jeolojisi ve mineralojisi. Maden Tetkik ve Arama Dergisi, 113, 61-92 (in Turkish).
  7. Jones, J. T. and Segnit, E. R. (1971) The nature of opal I. Nomenclature and constituent phases. Journal of the Geological Society of Australia, 18, 57-68. https://doi.org/10.1080/00167617108728743
  8. Kim, Y.D., Ko, C.S., Heo, C.H., and Kim, S.Y. (2010) Demand-Supply and Production of World Lithium Reso12urces. Journal of Econ. Environ Geol, 43(4), 283-289 (in Korean).
  9. Kocak, I. and Koc, s. (2012) Major and trace element geochemistry of the Bigadic borate deposit, Balikesir, Turkiye. Geochemistry International, 50(11), 926-951. https://doi.org/10.1134/S0016702912090030
  10. Koh, S. M., Lee, B. H., Lee, G., and Cicek, M. (2014) Occurrence and Formation Environment of Boron Deposits in Turkey. Journal of Econ. Environ Geol, 47(5), 541-549 (in Korean with English abstract). https://doi.org/10.9719/EEG.2014.47.5.541
  11. Komadel, P., Madejova, J., Janek, M., Gates, W.P., Kirkpatrick, R.J., and Stucki, J.W. (1996) Dissolution of hectorite in inorganic acids. Clays and Clay Minerals, 44(2), 228-236. https://doi.org/10.1346/CCMN.1996.0440208
  12. Komadel, P. (2016) Acid activated clays: Materials in continuous demand. Applied Clay Science, 131, 84-99. https://doi.org/10.1016/j.clay.2016.05.001
  13. Koo, H. J., Lee, B. Y., Cho, H. G., and Koh, S. M. (2016) Study of Heat and Acid Treatment for Hectorite in Turkey Boron Deposit. Journal of the Mineralogical Society of Korea, 29, 103-111 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2016.29.3.103
  14. Korea Institute of Geoscience and Mineral Resources (KIGAM) (2014) Potential evaluation and exploration of overseas rare metal resources. Ministry of Science, ICT & Future Planning, GP2012-002-2014(3), 388p, (in Korean).
  15. Korea Institute of Geoscience and Mineral Resources (KIGAM) (2015) Exploration and Potential Evaluation of Overseas/North Korea/Arctic circle Mineral Resources. Ministry of Science, ICT & Future Planning, GP2015-033-2015(1), 974p (in Korean).
  16. Kunasz, Ir. (2006) Lithium resources. Industrial Minerals and Rocks, SME (Soc. Mining Metallurgy and Exploration), 599-614.
  17. Lien, R. H. (1985) Recovery of Lithium from a Montmorillonite-type Clay. US Department of the Interior, Bureau of Mines. 26p.
  18. Meshram Pratima., Pandey, B. D. and Mankhand, T. R. (2014) Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy, 150, 192-208. https://doi.org/10.1016/j.hydromet.2014.10.012
  19. MTA (2013) Li investigation of boron deposits in Turkey. unpublished.
  20. MTA (2014) Geology of boron deposits in Turkey. unpublished.
  21. Osthaus, B. B. (1956) Kinetic studies on montmorillonites and nontronite by the acid-dissolution technique. Clays Clay Miner, 4, 301-321.
  22. Ozdemir, Z., Zorlu, S., Akyildiz, M., and Eryilmaz, F. Y. (2014) Determination of Indicator Plants for Boron in the Kirka (Eskisehir/Turkey) Boron Deposit Area. International Journal of Geosciences, 5(1), 77-84. https://doi.org/10.4236/ijg.2014.51009
  23. Rompaey, K.V., Ranst, E.V., Coninck, F. and Vindevogel, N. (2002) Dissolution characteristics of hectorite in inorganic acids. Applied Clay Science, 21(5), 241-256. https://doi.org/10.1016/S0169-1317(02)00086-8
  24. Yoon, S. J. and Moon, H. S. (1994) The Effects of Acid Treatment of Bentonite on Its Crystal Structure. Journal of Econ. Environ Geol, 27(6), 507-521 (in Korean with English abstract).