DOI QR코드

DOI QR Code

Characteristics of Temperature in Reformer Tube and Chemical Reaction for Steam Methane Ratio

수증기-메탄 혼합비에 따른 개질 튜브 내 온도 및 화학반응 특성

  • Han, Jun Hee (Dept. of Mechanical Systems Engineering, Chung-Ang University) ;
  • Kim, Ji Yoon (Energy Safety Research Institute of Chung-Ang University) ;
  • Lee, Seong Hyuk (Dept. of Mechanical Engineering, Chung-Ang University)
  • 한준희 (중앙대학교 기계시스템 엔지니어링학과) ;
  • 김지윤 (중앙대학교 차세대 에너지안전연구소) ;
  • 이성혁 (중앙대학교 기계공학부)
  • Received : 2016.06.15
  • Accepted : 2016.09.29
  • Published : 2016.10.31

Abstract

The aim of numerical study is the investigation of the solid and fluid temperatures in a reformer tube and chemical reaction characteristics of different steam-carbon ratio. We considered conjugate heat transfer contain radiation, convection and conductive heat transfers. This is because steam reforming reaction of hydrocarbon occurred high temperature conditions up to 800 K- 1000 K by using commercial computational fluid dynamics (CFD) code (Fluent ver. 13.0). For numerical simulation, the Reynolds-Averaged Navier-Stokes, momentum and energy equation were employed. In addition, inside of reformer tube is assumed as the porous medium to consider the Nichrome-based catalyst. To analysis characteristics of tube temperature in chemical reaction, we changed steam-methane ratio(SCR) from 1 to 6. As increased SCR, the higher tube temperature and methane conversion were observed. It was obtained that the highest hydrogen production held in SCR of 5.

본 연구의 목적은 실제 산업현장에서 사용되는 수소 개질로 내 개질가스의 수증기-메탄 혼합비에 따른 튜브 내 온도 및 화학반응 특성을 수치 해석하는 것이다. 탄화수소의 수증기 개질반응은 800 K - 1000 K 이상의 고온에서 발생하기 때문에 대류, 전도 및 복사 열전달을 고려한 복합 열전달을 고려해야 한다. 수치해석은 상용 전산유체역학(CFD) 코드(ANSYS Fluent V.13.0)를 사용하였다. 본 연구에서 해석을 위해 Reynolds-Averaged Navier-Stokes, 운동량 및 에너지 방정식을 사용하고, 화학반응이 발생하는 튜브 내부는 니크롬 재질의 다공성 영역으로 가정하였다. 개질 튜브 내 온도 및 화학반응 특성을 비교하기 위해 메탄과 수증기의 혼합비를 1-6으로 증가시켜 비교 분석하였다. 수치해석 결과, 메탄에 대한 수증기 비율이 높을수록 튜브 내부의 온도가 증가하고, 메탄의 전화율이 증가한다. 그러나 수소 개질량은 수증기와 메탄의 비율이 5일 때 가장 많은 것을 알 수 있다.

Keywords

References

  1. Schadel, B. T., M. Duisberg, and O. Deutschmann, "Steam Reforming of Methane, Ethane, Propane, Butane, and Natural Gas over a Rhodium-based Catalyst", Catalysis Today, 142, pp. 42-51 (2009) https://doi.org/10.1016/j.cattod.2009.01.008
  2. Sechested, J., "Four Challenges for Nickel Steam-Reforming Catalysts, Catalysis Today, 111, pp 103-110 (2006) https://doi.org/10.1016/j.cattod.2005.10.002
  3. Rostrup-Nielsen, J. R., "Catalytic Steam Reforming", Catalysis Science and Technology, 5, pp. 1-117 (1984)
  4. Hoang, D. L., Chan, S. H., and O. L. Ding, "Kinetic and Modelling Study of Methane Steam Reforming over Sulfide Nickel Catalyst on a Gamma Alumina Support", Chemical Engineering Journal, 112, pp. 1-11 (2005) https://doi.org/10.1016/j.cej.2005.06.004
  5. Roh, H. S., Lee, D. K., Koo, K. Y., U. H. Jung, and W. L. Yoon, "Natural gas Steam Reforming for Hydrogen Production over Metal Monolite Catalyst with Efficient Heat-transfer", International Journal of Hydrogen Energy, 35, pp. 1613-1619 (2010) https://doi.org/10.1016/j.ijhydene.2009.12.051
  6. Demirbas, A., Biofuels sources, "Biofuels Policy, Biofuel Economy and Global Biofuel Projections, Energy Conversion and Management. Manage, 49, pp. 2106-2116 (2008) https://doi.org/10.1016/j.enconman.2008.02.020
  7. Basini, L., Aasberg-Petersen, K., Guarinoni, A., and Ostberg, M., "Catalytic Partial Oxidation of Natural Gas at Evlevated Pressure and Low Residence Time", Catalysis Today, 64, pp. 21-30 (2001) https://doi.org/10.1016/S0920-5861(00)00505-8
  8. Qi, A., Wang, S., Ni, C., and Wu, D., "Autothermal Reforming of Gasoline on Rh-based Monolithic Catalysts", International Journal of Hydrogen Energy, 32, pp. 981-991 (2007) https://doi.org/10.1016/j.ijhydene.2006.06.072
  9. Arbag, H., Yasyerli, S., Yasyerli, N., and Dogu, C., "Activity and Stability Enhancement of Ni-MCM-41 Catalysts by Rh Incorporation for Hydrogen from Dry Reforming of Methane", International journal of Hydrogen Energy, 35, pp. 2296-2304 (2010) https://doi.org/10.1016/j.ijhydene.2009.12.109
  10. James A. Liu, "Kinetics, Catalysis and Mechanism of Methane Steam Reforming", WPI Chemical Engineering Department, (2006)
  11. M.S Ali et al, "A Study of Effect of Pressure, Temperature and Steam/Natural Gas Ratio on Reforming Process for Ammonia Production", Journal of Chemical Engineering, 23, pp. 1995-2005 (2005)
  12. Lee, S., Bae, J., Lim, S., Park, J., "Improve Configuration of Supported Nickel Catalysts in a Steam Reformer for Effective Hydrogen Production from Methane", Journal of Power Sources, 180, pp. 506-515 (2008) https://doi.org/10.1016/j.jpowsour.2008.01.081
  13. Chibane, L., Djellouli, B., "Methane Steam Reforming Reaction Behaviour in a Packed Bed Membrane Reactor", International Journal of Chemical Engineering and Applications, 2, pp. 147-156 (2011)
  14. Kuroki, M., Ookawara, S., and OGAWA, K., "A High-Fidelity CFD Model of Methane Steam Reforming in a Packed Bed reactor", Journal of Chemical Engineering of Japan, 42, pp. 73-78, (2009) https://doi.org/10.1252/jcej.08we256
  15. Choi, C. G., Chung, T. Y., Nam, J. H., and Shin, D. H., "A Comparative Study for Steam Methane Reforming Reaction Analysis Model", Transactions of the Korean Society of Mechanical Engineers B, pp. 497-503 (2008)
  16. Bastmeyer, M., Deutschnann, O., and Grunwaklt, J. D., "Catalytic Reforming of Methane in the Presence of CO2 and H2O at High Pressure.", Karlsruher Institut fur Technologie, (2013)