DOI QR코드

DOI QR Code

노말부탄올과 파라자일렌 혼합물의 최소자연발화온도 측정 및 예측

Measurement and Prediction of Autoignition Temperature of n-Butanol+p-Xylene Mixture

  • 하동명 (세명대학교 보건안전공학과)
  • Ha, Dong-Myeong (Department of Occupational Health and Safety Engineering, Semyung University)
  • 투고 : 2016.06.17
  • 심사 : 2016.08.30
  • 발행 : 2016.10.31

초록

최소자연발화온도는 가연성물질이 주위의 열에 의해 스스로 발화하는 최저온도이다. 최소자연발화온도는 유기혼합물중 가연성 액체혼합물의 안전한 취급을 위해서 중요한 지표가 된다. 본 연구에서는 ASTM E659 장치를 이용하여 가연성 혼합물인 n-butanol+p-xylene 혼합물의 최소자연발화온도를 측정하였다. 2성분계를 구성하는 순수물질인 n-butanol과 p-xylene의 최소자연발화온도는 각 각 $340^{\circ}C$, $557^{\circ}C$로 측정되었다. 그리고 측정된 n-butanol+p-xylene 혼합물의 최소자연발화온도는 제시된 식에 의한 예측값과 적은 평균절대오차에서 일치하였다.

The autoignition temperature (AIT) of a substance is the lowest temperature at which the vapor ignites spontaneously from the heat of the environment. The AIT is important index for the safe handling of flammable liquids which constitute the solvent mixtures in the process. This study measured the AITs of n-butanol+p-xylene mixture by using ASTM E659 apparatus. The AITs of n-butanol and p-xylene which constituted binary system were $340^{\circ}C$ and $557^{\circ}C$, respectively. The experimental AITs of n-butanol+p-xylene mixture were a good agreement with the calculated AITs by the proposed equations with a few A.A.D.(average absolute deviation).

키워드

참고문헌

  1. Meyer, E., Chemistry of Hazardous Materials, Prentice Hall Career & Technology, (1990)
  2. Gorbett, G. E. and Pharr, J. L., Fire Dynamics, 2nd ed., Pearson Education Inc., (2011)
  3. Zhang, J. et al., "Experimental and Modeling Study of Auto-ignition of n-Heptane/n-Butanol Mixtures", 160, 31-39, (2013) https://doi.org/10.1016/j.combustflame.2012.09.006
  4. Kim, J. H. and Choi, J. W., "A Study on Characteristics of Atuo Ignition and Activation Energy of Ethylene Glycol and Diethylene Glycol", KIGAS, 20(2), 16-22, (2016)
  5. Ha, D. M. Measurement and Prediction of Autoignition Temperature of n-Hexanol+p-Xylene Mixture", Journal of Energy Engineering, 25(1), 48-552, (2016) https://doi.org/10.5855/ENERGY.2015.25.1.048
  6. Goldfrab, J. and Zinoviev, A., "A Study of Delay Spontaneous Insulation Fires", Physics Letter, A 311, 491-500, (2003)
  7. Box. G.E.P. and Draper, N. R., Empirical Model-Building and Response Surface, John Wiley and Sons, Inc., (1987)
  8. Sheldon, M., "Understanding Auto-Ignition Temperature", Fire Engineering Journal, June, 27-32,(1984)
  9. Semenov, N .N., Some Problems in Chemical Kinetics and Reactivity, Vol. 2, Princeton University Press, Princeton, N.J., (1959)
  10. NFPA, Fire Hazard Properties of Flammable Liquid, Gases, and Volatile Solids, NFPA 325M, National Fire Protection Association, (1991)
  11. Kanury, A .M., SFPE Handbook of Fire Protection Engineering : Ignition of Liquid Fuels, 2nd ed., SFPE, (1995)
  12. Lenga, R. E and Votoupal, K. L., The Sigma Aldrich Library of Regulatory and Safety Data, Volume I-II, Sigma Chemical Company and Aldrich Chemical Company Inc., (1993)
  13. Hilado, C.J. and Clark, S.W., "Autoignition Temperature of Organic Chemicals", Chemical Engineering, 4, 75-80, (1972)
  14. Lewis, R. J., SAX's Dangerous Properties of Industrial Materials, 11th ed., John Wiley & Son, Inc., New Jersey, (2004)
  15. Babrauskas, V., Ignition Handbook, Fire Science Publishers, SFPE, (2003)
  16. Jackson, J. L. "Spontaneous Ignition Temperature - Commercial Fluids and Pure Hydrocarbons-", Industrial and Engineering Chemistry, 43(12), 2869-2870, (1951) https://doi.org/10.1021/ie50504a058