DOI QR코드

DOI QR Code

분리막 반응기를 이용한 천연가스 개질반응의 성능에 관한 비교 분석

Comparative studies for the performance of a natural gas steam reforming in a membrane reactor

  • 이보름 (대구가톨릭대학교 신소재화학공학과) ;
  • 임한권 (대구가톨릭대학교 신소재화학공학과)
  • Lee, Boreum (Dept. of Advanced Materials and Chemical Engineering, Catholic University of Daegu) ;
  • Lim, Hankwon (Dept. of Advanced Materials and Chemical Engineering, Catholic University of Daegu)
  • 투고 : 2016.10.19
  • 심사 : 2016.12.26
  • 발행 : 2016.12.31

초록

본 연구에서는 다양한 수소 생산 방법 중 하나인 천연가스 수증기 개질반응(natural gas steam reforming reaction)에 대해 일반적인 충전층반응기와 반응기와 수소분리기가 결합된 새로운 형태의 분리막 반응기에서의 성능에 대한 비교분석을 수행하였다. Xu 와 Froment에 의해 기존에 발표된 실험결과를 바탕으로 상업용 화학공정모사기인 Aspen $HYSYS^{(R)}$ 모델이 개발되었으며, 반응온도, $H_2$ 투과량, Ar 유량 등이 분리막 반응기에서의 반응물의 전환율 및 $H_2$ 수율 향상도에 미치는 영향에 대해 분석한 결과 분리막 반응기에서 보다 많은 양의 수소수율 및 메탄전환율이 확인되었다. 더 나아가, 전체 시스템에서 필요로 하는 열량을 공급하기 위해 요구되는 천연가스의 양에 초점을 맞춰 분리막 반응기에서의 원가절감 가능성을 평가한 결과, 분리막 반응기에서 10.94%의 원가절감이 관찰되었다.

For a natural gas steam reforming, comparative studies of the performance in a conventional packed-bed reactor and a membrane reactor, a new conceptual reactor consisting of a reactor with series of hydrogen separation membranes, have been performed. Based on experimental kinetics reported by Xu and Froment, a process simulation model was developed with Aspen $HYSYS^{(R)}$, a commercial process simulator, and effects of various operating conditions like temperature, $H_2$ permeance, and Ar sweep gas flow rate on the performance in a membrane reactor were investigated in terms of reactant conversion and $H_2$ yield enhancement showing improved $H_2$ yield and methane conversion in a membrane reactor. In addition, a preliminary cost estimation focusing on natural gas consumption to supply heat required for the system was carried out and feasibility of possible cost savings in a membrane reactor was assessed with a cost saving of 10.94% in a membrane reactor.

키워드

참고문헌

  1. Ma, L., Castro-Dominguez, B., Kazantzis, N. K., and Ma, Y.H., "Integration of membrane technology into hydrogen production plants with $CO_2$ capture: An economic performance assessment study", Int. J. Greenh. Gas Con., 42, 424-438, (2015) https://doi.org/10.1016/j.ijggc.2015.08.019
  2. Xu, J., and Froment, G. F., "Methane steam reforming, methanation and water-gas shift:I. Intrinsic kinetics", AIChE J., 35, 88-95, (1989) https://doi.org/10.1002/aic.690350109
  3. Cho, W., Yu, H., Ahn, W., and Kim, S., "Synthesis gas production process for natural gas conversion over $Ni-La_2O_3$ catalyst", J. Ind. Eng. Chem., 28, 229-235, (2015) https://doi.org/10.1016/j.jiec.2015.02.019
  4. Lee, B., Lee, S., and Lim, H., "Numerical modeling studies for a methane dry reforming in a membrane reactor", J. Nat. Gas Chem., 34, 1251-1261, (2016)
  5. Prabhu, A. K., Liu, A., Lovell, L. G., and Oyama, S. T., "Modeling of the methane reforming reaction in hydrogen selective membrane reactors", J. Membr. Sci., 177, 83-95, (2000) https://doi.org/10.1016/S0376-7388(00)00449-X
  6. Vazquez, F. V., Simell, P., Pennanen, J., and Lehtonen, J., "Reactor design and catalyst testing for hydrogen production by methanol reforming for fuel cells applications", Int. J. Hydrogen Energy, 41, 924-935, (2016) https://doi.org/10.1016/j.ijhydene.2015.11.047
  7. Iulianelli, A., Ribeirinha, P., Mendes, A., and Basile, A., "Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review", Renew. Sust. Energ. Rev., 29, 355-368, (2014) https://doi.org/10.1016/j.rser.2013.08.032
  8. Yun, S., Lim, H., and Oyama, S. T., "Experimental and kinetic studies of the ethanol steam reforming reaction equipped with ultrathin Pd and Pd-Cu membranes for improved convertsion and hydrogen yield", J. Membr. Sci., 409-410, 222-231, (2012) https://doi.org/10.1016/j.memsci.2012.03.059
  9. Galvita, V. V., Semin, G. L., Belyaev, V. D., Semicolenov, V. A., Tsiakaras, P., and Sobyanin, V. A., "Synthesis gas production by steam reforming of ethanol", Appl. Catal., A, 220, 123-127, (2001) https://doi.org/10.1016/S0926-860X(01)00708-6
  10. Zakkour, P., and Cook, G., CCS Roadmap for Industry: High-purity $CO_2$ sources, Carbon Counts Company, London, (2010)
  11. Voldsund, M., Jordal, K., and Anantharaman, R., "Hydrogen production with $CO_2$ capture", Int. J. Hydrogen Energy, 41, 4969-4992, (2016) https://doi.org/10.1016/j.ijhydene.2016.01.009
  12. Holladay, J. D., Hu, J., King, D. L., and Wang, Y., "An overview of hydrogen production technologies", Catal. Today, 139, 244-260, (2009) https://doi.org/10.1016/j.cattod.2008.08.039
  13. Dincer, I., and Acar, C., "Review and evaluation of hydrogen production methods for better sustainability", Int. J. Hydrogen Energy, 40, 11094-11111, (2015) https://doi.org/10.1016/j.ijhydene.2014.12.035
  14. Voldsund, M., Jordal, K., and Anantharaman, R., "Hydrogen production with $CO_2$ capture", Int. J. Hydrogen Energy, 41, 4969-4992, (2016) https://doi.org/10.1016/j.ijhydene.2016.01.009
  15. Sircar, S., "Pressure swing adsorption", Ind. Eng. Chem. Res., 41, 1389-1392, (2002) https://doi.org/10.1021/ie0109758
  16. Song, C., Liu, Q., Ji, N., Kansha, Y., and Tsutsumi, A., "Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration", Appl. Energy, 154, 392-401, (2015) https://doi.org/10.1016/j.apenergy.2015.05.038
  17. Barelli, L., Bidini, G., Gallorini, F., and Servili, S., "Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review", Energy, 33, 554-570, (2008) https://doi.org/10.1016/j.energy.2007.10.018
  18. Silva, J. D., and Abreu, C. A. M. D., "Modelling and simulation in conventional fixed-bed and fixed-bed membrane reactors for the steam reforming of methane", Int. J. Hydrogen Energy, 41, 11660-11674, (2016) https://doi.org/10.1016/j.ijhydene.2016.01.083
  19. Sunny, A., Solomon, P. A., and Aparna, K., "Syngas production from regasified liquefied natural gas and its simulation using Aspen HYSYS", J. Nat. Gas. Sci. Eng., 30, 176-181, (2016) https://doi.org/10.1016/j.jngse.2016.02.013
  20. Alshammari, Y. M., and Hellgardt, K., "A new HYSYS model for underground gasification of hydrocarbons under hydrothermal conditions", Int. J. Hydrogen Energy, 39, 12648-12656, (2014) https://doi.org/10.1016/j.ijhydene.2014.05.182
  21. Qeshta, H. J., Abuyahay, S., Pal, P., and Banat, F., "Sweetening liquefied petroleum gas (LPG): Parametric sensitivity analysis using Aspen HYSYS", J. Nat. Gas. Sci. Eng., 26, 1011-1017, (2015) https://doi.org/10.1016/j.jngse.2015.08.004
  22. Gopaul, S. G., and Dutta, A., "Dry reforming of multiple biogas types for syngas production simulated using Aspen Plus: The use of partial oxidation and hydrogen combustion to achieve thermo-neutrality", Int. J. Hydrogen Energy, 40, 6307-6318, (2015) https://doi.org/10.1016/j.ijhydene.2015.03.079
  23. Ye, G., Xie, D., Qiao, W., Grace, J. R., and Lim, C. J., "Modeling of fluidized bed membrane reactors for hydrogen production from steam methane reforming with Aspen Plus", Int. J. Hydrogen Energy, 34, 4755-4762, (2009) https://doi.org/10.1016/j.ijhydene.2009.03.047
  24. Sotudeh-Gharebaagh, R., Legros, R., Chaouki, J., and Paris, J., "Simulation of circulating fluidized bed reactors using ASPEN PLUS", Fuel, 77, 327-337, (1998) https://doi.org/10.1016/S0016-2361(97)00211-1
  25. Chen, W., Ham, L. V. D., Nijmeijer, A., and Winnubst, L., "Membrane-integrated oxy-fuel combustion of coal: Process design and simulation", J. Membr. Sci., 492, 461-470, (2015) https://doi.org/10.1016/j.memsci.2015.05.062
  26. Choi, J., Park, M., Kim, J., Ko, Y., Lee, S., and Baek, I., "Modelling and analysis of pre-combustion $CO_2$ capture with membranes", Korean J. Chem. Eng., 30, 1187-1194, (2013) https://doi.org/10.1007/s11814-013-0042-7
  27. Park, N., Park, M., Ha, K., Lee, Y., and Jun, K., "Modeling and analysis of a methanol synthesis process using a mixed reforming reactor: Perspective on methanol production and $CO_2$ utilization", Fuel, 129, 163-172, (2014) https://doi.org/10.1016/j.fuel.2014.03.068
  28. Leonzio, G., "Process analysis of biological Sabatier reaction for bio-methane production", Chem. Eng. J., 290, 490-498, (2016) https://doi.org/10.1016/j.cej.2016.01.068
  29. Lu, H., Lu, Y., and Rostam-Abadi, M., "$CO_2$ absorbents for a sorption-enhanced water-gas-shift process in IGCC plants: A thermodynamic analysis and process simulation study", Int. J. Hydrogen Energy, 38, 6663-6672, (2013) https://doi.org/10.1016/j.ijhydene.2013.03.067
  30. Molino, A., Migliori, M., Ding, Y., Bikson, B., Giordano, G., and Braccio, G., "Biogas upgrading via membrane process: Modelling of pilot plant scale and the end uses for the grid injection", Fuel, 107, 585-592, (2013) https://doi.org/10.1016/j.fuel.2012.10.058
  31. Kakaee, A., Paykani, A., and Ghajar, M., "The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines", Renew. Sust. Energ. Rev., 38, 64-78, (2014) https://doi.org/10.1016/j.rser.2014.05.080
  32. Gim, B., and Yoon, W. L., "Analysis of the economy of scale and estimation of the future hydrogen production costs at on-site hydrogen refueling stations in Korea", Int. J. Hydrogen Energy, 37, 19138-19145, (2012) https://doi.org/10.1016/j.ijhydene.2012.09.163
  33. https://www.scribd.com/doc/310334114/CEPCI-Fe bruary-2016-pdf.
  34. Sarvar-Amini, A., Sotudeh-Gharebagh, R., Bashiri, H., Mostoufi, N., and Haghtalab, A., "Sequential simulation of a fluidized bed membrane reactor for the steam methane reforming using Aspen Plus", Energy Fuels, 21, 3593-3598, (2007) https://doi.org/10.1021/ef7003514
  35. Roberts, M., Zabransky, R., Doong, S., and Lin, J., Single membrane reactor configuration for separation of hydrogen, carbon dioxide and hydrogen sulfide, Final Technical Report, Department of Energy, USA, (2008)

피인용 문헌

  1. LNG 추진선박에 수소 연료전지 시스템 적용을 위한 개질기의 특성 분석 vol.27, pp.1, 2021, https://doi.org/10.7837/kosomes.2021.27.1.135