Abstract
This paper describes the construction of knowledge data retrieval management system based on medical image CT. The developed system is aimed to improve the efficiency of the hospital by reading the medical images using the intelligent retrieval technology and diagnosing the patient 's disease name. In this study, the medical image DICOM file of PACS is read, the image is processed, and feature values are extracted and stored in the database. We have implemented a system that retrieves similarity by comparing new CT images required for medical treatment with the feature values of other CTs stored in the database. After converting 100 CT dicom provided for academic research into JPEG files, Code Book Library was constructed using SIFT, CS-LBP and K-Mean Clustering algorithms. Through the database optimization, the similarity of the new CT image to the existing data is searched and the result is confirmed, so that it can be utilized for the diagnosis and diagnosis of the patient.
본 논문은 의료영상 CT 기반의 지식데이터 검색 관리시스템 구축에 대한 내용을 기술한다. 개발된 시스템은 정밀한 지능형 검색기술을 활용하여 의료영상을 판독하고 환자의 병명을 진단함으로써 병원 업무 효율성을 높이데 목적이 있다. 본 연구에서는 PACS의 의료 영상 DICOM 파일을 읽어서 영상을 처리하고, 특징 값들을 추출하여 데이터베이스에 저장한다. 진료에 필요한 새로운 의료영상을 읽어서 데이터베이스에 저장된 다른 CT의 특징 값과 비교하여 유사성을 검색하는 시스템을 구현하였다. 연구학술용으로 제공된 100장의 CT DICOM을 JPEG 파일 형태로 변환한 후, SIFT, CS-LBP, K-Mean Clustering 알고리즘을 이용하여 Code Book Library를 구축하였다. 데이터베이스 최적화를 통하여 새로운 CT 이미지에 대한 기존 데이터와의 유사성을 검색 하여 그 결과를 확인함으로써 환자의 진료 및 진단에 활용할 수 있도록 하였다.