DOI QR코드

DOI QR Code

Temperature Reduction with the Location of Window in a Turbine Building of Power Plant

발전소 터빈건물의 창문 위치에 따른 온도저감

  • Ha, J.S. (Dept. of Mechanical & Automotive Engineering, Keimyung University) ;
  • Kim, T.K. (Dept. of Mechanical & Automotive Engineering, Keimyung University) ;
  • Jeong, K.H. (Dept. of Mechanical Engineering, Graduate School, Keimyung University)
  • 하지수 (계명대학교 기계자동차공학과) ;
  • 김태권 (계명대학교 기계자동차공학과) ;
  • 정경호 (계명대학교 대학원 기계공학과)
  • Received : 2016.08.24
  • Accepted : 2016.10.25
  • Published : 2016.12.30

Abstract

In this study, a thermal flow analysis was performed using the commercial code, ANSYS-FLUENT to reduce room temperature in a turbine building of power plant. The selected control volume of the operating floor and deaerator floor for the turbine building was respectively modelled. The skylight windows at the deaerator floor were employed for ventilation windows. Through the study, in the first we found that all window close of the deaerator floor is one alternative for reducing the temperature of the operating floor. The next thing we knew that for windows open at the front of the deaerator floor, the temperature of deaerator zone and crane zone can be respectively reduced to $1.5^{\circ}C$ and $1.6^{\circ}C$. In addition, for windows close at the rear of the deaerator floor, the temperature of deaerator zone and crane zone can be respectively reduced to 1.4 and $0.5^{\circ}C$. Therefore, it was concluded that a better choice is to open the front windows at deaerator floor to reduce the temperature of the entire deaerator floor having high temperature.

본 연구에서는 화력발전소 터빈 건물의 온도저감 방안을 도출하기 위해 전산유체역학 상용코드인 ANSYS-FLUENT를 이용하여 열유동 해석을 수행하였다. 터빈 건물의 운전층(operating floor)과 탈기기층(deaerator floor)을 검사체적으로 선정하여 모델링을 하였으며 탈기기층에 설치된 기존의 채광창을 활용하여 환기창으로 대체하는 경우에 대해 해석을 수행하였다. 본 연구를 통하여 첫째, 운전층의 온도를 저감하기 위한 방안은 탈기기층의 모든 창문을 열지 않아야 됨을 알았다. 둘째, 탈기기층의 온도를 저감하기 위한 방안으로 탈기기층의 전면부의 창문을 개방하면 탈기기 영역과 크레인 영역은 각각 $1.5^{\circ}C$$1.6^{\circ}C$를 저감할 수 있었고, 탈기기 후면부의 창문을 개방하면 탈기기 영역은 $1.4^{\circ}C$, 크레인 영역은 $0.5^{\circ}C$의 온도를 저감할 수 있었다. 따라서 고온의 탈기기층 전체 영역의 온도를 저감하기 위해서는 탈기기층 전면부의 창문을 개방하는 것이 유리할 것으로 판단된다.

Keywords

References

  1. 정은교 : "고열작업환경 관리지침," 안전보건공단, pp. 6-7, (2015)
  2. Park, K.S. 외: "CFD Analysis for the Outside Ventilation System Performance Improvement," The Korean Society of Mechanical Engineers, Vol. 2012, No. pp. 2878-2880, (2012)
  3. Chung, Y.B. and Ha, Y.C.: "A Study for Application and Numerical Prediction of Wind Pressure Distribution over Building Cladding Using Computational Fluent Dynamics," The Wind Engineering Institute of Korea, Vol. 12, No. 2, pp. 113-119, (2008)
  4. Cho, K.P. and Jeong, S.H.: "Estimation of Wind Pressure on Apartment Buildings in a Group Using a CFD Analysis," Architectural Institute of Korea, Vol. 27, No. 1, pp. 27-34, (2011)
  5. Park, J.H. 외: "A Study about Analysis of Wind Pressure Distribution for a Rectangular Building Using CFD," The Society Of Air-Conditioning And Refrigerating Engineers Of Korea, Vol. 2015, No. 6, pp. 295-298, (2015)
  6. Kim, D.Y., and Song, D.S.: "Effect of Wind-Pressure on Indoor Air-Flow in High-Rise Office Buildings," The Society Of Air-Conditioning And Refrigerating Engineers Of Korea, Vol. 2015, No. 6, pp. 609-613, (2015)
  7. Park, J.B.: "An Experimental Study on Optimal Ventilation System in a Diesel Power Plant," Ulsan University, Masters. Dissertation (in Korean), (2014)
  8. ANSYS, Inc.: ANSYS FLUENT theory guide release 14.0, ANSYS Inc., (2011)