References
- P. Kogge et al. "ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems," DARPA, 2008.http://www.cse.nd.edu/Reports/2008/TR-2008- 13.pdf
- V. Anantharaj, F. Foertter, W. Joubert and J. Wells. "APPROACHING EXASCALE: Application Requirements for OLCF Leadership Computing," Oak Ridge Leadership Computing Facility Technical Report ORNL/TM-2013/186, 2013. https://www.olcf.ornl.gov/ media-center/center-reports/
- TOP500 Supercomputer Sites. http://top500.org/
- U.S. Department of Energy. "Synergistic Challenges in Data-Intensive Science and Exascale Computing," DOE ASCAC Data Subcommittee Report, 2013. http://science.energy.gov/-/media/ascr/ascac/pdf/repor ts/2013/ASCAC_Data_Intensive_Computing_report_f inal.pdf
- D. A. Reed and J. Dongarra. "Exascale Computing and Big Data," Communications of the ACM, Vol. 58, No. 7, pp. 56-68, 2015. https://doi.org/10.1145/2699414
- Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado, J. Dean and A. Y. Ng. "Building High-level Features Using Large Scale Unsupervised Learning," Proceedings of the 29th International Conference on Machine Learning, pp. 81-88, 2012.
- A. Coates, B. Huval, T. Wang, D. J. Wu, A. Y. Ng, and B. Catanzaro. "Deep learning with COTS HPC systems," Proceedings of the 30th International Conference on Machine Learning, pp. 1337-1345, 2013.
- R. Wu, S. Yan, Y. Shan, Q. Dang and G. Sun. "Deep Image: Scaling up Image Recognition," arXiv preprint arXiv: 1501.02876, 2015.
- K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss and E. S. Chung. "Accelerating Deep Convolutional Neural Networks Using Specialized Hardware," Microsoft Research, 2015. http://research.microsoft.com/en-us/projects/catapult/
- Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama and T. Darrell. "Caffe: Convolutional Architecture for Fast Feature Embedding," Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675-678, 2014.
- M. Abadi et al. "TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems," TensorFlow White Paper, 2015. https://www.tensorflow.org/
- Precision Medicine Initiative Cohort Program. https://www.nih.gov/precision-medicine-initiative-coh ort-program
- D. Ferrucci, A. Levas, S. Bagchi, D. Gondek and E. T. Mueller. "Watson: Beyond Jeopardy!," Artificial Intelligence, Vol. 199-200, pp. 93-105, 2013. https://doi.org/10.1016/j.artint.2012.06.009
- S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J. Lipman. "Basic Local Alignment Search Tool," Journal of Molecular Biology, Vol. 215, No. 3, pp. 403-410, 1990. https://doi.org/10.1016/S0022-2836(05)80360-2
- B. Langmead, C. Trapnell, M. Pop and S. L. Salzberg. "Ultrafast and memory-efficient alignment of short DNA sequences to the human genome," Genome Biology, Vol. 10, No. 3, Article R25, 2009.
- F. Sievers, A. Wilim, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Soding, J. D. Thompson and D. G. Higgins. "Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega," Molecular Systems Biology, Vol. 7, No. 1, Article No. 539, 2011.
- C.-M. Liu, T. Wong, E. Wu, R. Luo, S.-M. Yiu, Y. Li, B. Wang, C. Yu, X. Chu, K. Zhao, R. Li and T.-W. Lam. "SOAP3: Ultra-fast GPU-based parallel alighment tool for short reads," Bioinformatics Advacned, 2012.
- J. Arram, K. H. Tsoi, W. Luk and P. Jiang. "Reconfigurable Acceleration of Short Read Mapping," Proceedings of IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines, pp. 210-217, 2013.
- N. Savage. "Bioinformatics: Big Data Versus the Big C," Nature, Vol. 509, No. 7502, pp. S66-S67, 2014. https://doi.org/10.1038/509S66a
- J. Ugander, B. Karrer, L. Backstrom and C. Marlow. "The Anatomy of the Facebook Social Graph," arXiv preprint arXiv:1111.4503, 2011.
- The Graph 500 List. http://www.graph500.org/
- W. Jung, J. Park and J. Lee. "Versatile and Scalable Parallel Histogram Construction," Proceedings of the 23rd ACM/IEEE/IFIP International Conference on Parallel Architectures and Compilation Techniques, pp. 127-138, 2014.
- 조강원, 서상민, 나정호, 김정원, 김정현, 이준, 박정호, 이용준, 김홍준, 강수연, 주진영, 박선명, 정우근, 임기현, 이재진. "이종 슈퍼컴퓨터 기술 동향과 슈퍼컴퓨터 '천둥'의 개발 사례," 정보과학회지, 제31권, 제4호, pp. 34-41, 2013.
- HSA Platform System Architecture Specification 1.0. http://www.hsafoundation.com/standards/
- D. Bryant. "Disrupting the Data Center to Create the Digital Services Economy," The Data Stack, 2014. https://communities.intel.com/community/itpeernetwo rk/datastack/blog/2014/06/18/disrupting-the-data-cent er-to-create-the-digital-services-economy
- AMD Opteron A1100 SOC Series. http://www.amd.com/ Documents/A-Heirofalcon-Product-Brief.pdf
- Mont-Blanc European Approach Towards Energy Efficient High Performance. https://www.montblancproject. eu/
- OpenCL - The open standard for parallel programming of heterogeneous systems. https://www.khronos.org/opencl/
- Altera SDK for OpenCL. https://www.altera.com/opencl
- Xilinx SDAccel Development Environment. http://www. xilinx.com/products/design-tools/software-zone/sdacc el.html
- J. Kim, T. T. Dao, J. Jung, J. Joo and J. Lee. "Bridging OpenCL and CUDA: A Comparative Analysis and Translation." Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Article No. 82, 2015.
- J. Kim, S. Seo, J. Lee, J. Nah, G, Jo and J. Lee. "SnuCL: an OpenCL Framework for Heterogeneous CPU/GPU Clusters," Proceedings of the 26th International Conference on Supercomputing, pp. 341-352, 2012.
- OpenMP. http://openmp.org/
- OpenACC. http://www.openacc.org/
- PGI Accelerator Compilers With OpenACC Directives. http://www.pgroup.com/resources/accel.htm
- G. Jo, J. Nah, J. Lee, J. Kim and J. Lee. "Accelerating LINPACK with MPI-OpenCL on Clusters with Multi-GPU Nodes," IEEE Transactions on Parallel and Distributed Systems, Vol. 26, No. 7, pp. 1814-1825, 2015. https://doi.org/10.1109/TPDS.2014.2321742
- J. Kim, H. Kim, J. H. Lee and J. Lee. "Achieving a Single Compute Device Image in OpenCL for Multiple GPUs," Proceedings of the 16th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 277-288, 2011.
- C. Angelini. "AMD GPUOpen: Doubling Down On Open-Source Development," Tom's Hardware, 2015. http://www.tomshardware.com/news/amd-gpuopen-op en-source-development,30750.html