슈퍼컴퓨터를 이용한 빅 데이터 분석 중심의 HPC 기술 전망

  • Published : 2016.02.19

Abstract

Keywords

References

  1. P. Kogge et al. "ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems," DARPA, 2008.http://www.cse.nd.edu/Reports/2008/TR-2008- 13.pdf
  2. V. Anantharaj, F. Foertter, W. Joubert and J. Wells. "APPROACHING EXASCALE: Application Requirements for OLCF Leadership Computing," Oak Ridge Leadership Computing Facility Technical Report ORNL/TM-2013/186, 2013. https://www.olcf.ornl.gov/ media-center/center-reports/
  3. TOP500 Supercomputer Sites. http://top500.org/
  4. U.S. Department of Energy. "Synergistic Challenges in Data-Intensive Science and Exascale Computing," DOE ASCAC Data Subcommittee Report, 2013. http://science.energy.gov/-/media/ascr/ascac/pdf/repor ts/2013/ASCAC_Data_Intensive_Computing_report_f inal.pdf
  5. D. A. Reed and J. Dongarra. "Exascale Computing and Big Data," Communications of the ACM, Vol. 58, No. 7, pp. 56-68, 2015. https://doi.org/10.1145/2699414
  6. Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado, J. Dean and A. Y. Ng. "Building High-level Features Using Large Scale Unsupervised Learning," Proceedings of the 29th International Conference on Machine Learning, pp. 81-88, 2012.
  7. A. Coates, B. Huval, T. Wang, D. J. Wu, A. Y. Ng, and B. Catanzaro. "Deep learning with COTS HPC systems," Proceedings of the 30th International Conference on Machine Learning, pp. 1337-1345, 2013.
  8. R. Wu, S. Yan, Y. Shan, Q. Dang and G. Sun. "Deep Image: Scaling up Image Recognition," arXiv preprint arXiv: 1501.02876, 2015.
  9. K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss and E. S. Chung. "Accelerating Deep Convolutional Neural Networks Using Specialized Hardware," Microsoft Research, 2015. http://research.microsoft.com/en-us/projects/catapult/
  10. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama and T. Darrell. "Caffe: Convolutional Architecture for Fast Feature Embedding," Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675-678, 2014.
  11. M. Abadi et al. "TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems," TensorFlow White Paper, 2015. https://www.tensorflow.org/
  12. Precision Medicine Initiative Cohort Program. https://www.nih.gov/precision-medicine-initiative-coh ort-program
  13. D. Ferrucci, A. Levas, S. Bagchi, D. Gondek and E. T. Mueller. "Watson: Beyond Jeopardy!," Artificial Intelligence, Vol. 199-200, pp. 93-105, 2013. https://doi.org/10.1016/j.artint.2012.06.009
  14. S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J. Lipman. "Basic Local Alignment Search Tool," Journal of Molecular Biology, Vol. 215, No. 3, pp. 403-410, 1990. https://doi.org/10.1016/S0022-2836(05)80360-2
  15. B. Langmead, C. Trapnell, M. Pop and S. L. Salzberg. "Ultrafast and memory-efficient alignment of short DNA sequences to the human genome," Genome Biology, Vol. 10, No. 3, Article R25, 2009.
  16. F. Sievers, A. Wilim, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Soding, J. D. Thompson and D. G. Higgins. "Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega," Molecular Systems Biology, Vol. 7, No. 1, Article No. 539, 2011.
  17. C.-M. Liu, T. Wong, E. Wu, R. Luo, S.-M. Yiu, Y. Li, B. Wang, C. Yu, X. Chu, K. Zhao, R. Li and T.-W. Lam. "SOAP3: Ultra-fast GPU-based parallel alighment tool for short reads," Bioinformatics Advacned, 2012.
  18. J. Arram, K. H. Tsoi, W. Luk and P. Jiang. "Reconfigurable Acceleration of Short Read Mapping," Proceedings of IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines, pp. 210-217, 2013.
  19. N. Savage. "Bioinformatics: Big Data Versus the Big C," Nature, Vol. 509, No. 7502, pp. S66-S67, 2014. https://doi.org/10.1038/509S66a
  20. J. Ugander, B. Karrer, L. Backstrom and C. Marlow. "The Anatomy of the Facebook Social Graph," arXiv preprint arXiv:1111.4503, 2011.
  21. The Graph 500 List. http://www.graph500.org/
  22. W. Jung, J. Park and J. Lee. "Versatile and Scalable Parallel Histogram Construction," Proceedings of the 23rd ACM/IEEE/IFIP International Conference on Parallel Architectures and Compilation Techniques, pp. 127-138, 2014.
  23. 조강원, 서상민, 나정호, 김정원, 김정현, 이준, 박정호, 이용준, 김홍준, 강수연, 주진영, 박선명, 정우근, 임기현, 이재진. "이종 슈퍼컴퓨터 기술 동향과 슈퍼컴퓨터 '천둥'의 개발 사례," 정보과학회지, 제31권, 제4호, pp. 34-41, 2013.
  24. HSA Platform System Architecture Specification 1.0. http://www.hsafoundation.com/standards/
  25. D. Bryant. "Disrupting the Data Center to Create the Digital Services Economy," The Data Stack, 2014. https://communities.intel.com/community/itpeernetwo rk/datastack/blog/2014/06/18/disrupting-the-data-cent er-to-create-the-digital-services-economy
  26. AMD Opteron A1100 SOC Series. http://www.amd.com/ Documents/A-Heirofalcon-Product-Brief.pdf
  27. Mont-Blanc European Approach Towards Energy Efficient High Performance. https://www.montblancproject. eu/
  28. OpenCL - The open standard for parallel programming of heterogeneous systems. https://www.khronos.org/opencl/
  29. Altera SDK for OpenCL. https://www.altera.com/opencl
  30. Xilinx SDAccel Development Environment. http://www. xilinx.com/products/design-tools/software-zone/sdacc el.html
  31. J. Kim, T. T. Dao, J. Jung, J. Joo and J. Lee. "Bridging OpenCL and CUDA: A Comparative Analysis and Translation." Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Article No. 82, 2015.
  32. J. Kim, S. Seo, J. Lee, J. Nah, G, Jo and J. Lee. "SnuCL: an OpenCL Framework for Heterogeneous CPU/GPU Clusters," Proceedings of the 26th International Conference on Supercomputing, pp. 341-352, 2012.
  33. OpenMP. http://openmp.org/
  34. OpenACC. http://www.openacc.org/
  35. PGI Accelerator Compilers With OpenACC Directives. http://www.pgroup.com/resources/accel.htm
  36. G. Jo, J. Nah, J. Lee, J. Kim and J. Lee. "Accelerating LINPACK with MPI-OpenCL on Clusters with Multi-GPU Nodes," IEEE Transactions on Parallel and Distributed Systems, Vol. 26, No. 7, pp. 1814-1825, 2015. https://doi.org/10.1109/TPDS.2014.2321742
  37. J. Kim, H. Kim, J. H. Lee and J. Lee. "Achieving a Single Compute Device Image in OpenCL for Multiple GPUs," Proceedings of the 16th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 277-288, 2011.
  38. C. Angelini. "AMD GPUOpen: Doubling Down On Open-Source Development," Tom's Hardware, 2015. http://www.tomshardware.com/news/amd-gpuopen-op en-source-development,30750.html