DOI QR코드

DOI QR Code

Bending analysis of an imperfect advanced composite plates resting on the elastic foundations

  • 투고 : 2016.09.10
  • 심사 : 2017.01.25
  • 발행 : 2016.09.25

초록

A two new high-order shear deformation theory for bending analysis is presented for a simply supported, functionally graded plate with porosities resting on an elastic foundation. This porosities may possibly occur inside the functionally graded materials (FGMs) during their fabrication, while material properties varying to a simple power-law distribution along the thickness direction. Unlike other theories, there are only four unknown functions involved, as compared to five in other shear deformation theories. The theories presented are variationally consistent and strongly similar to the classical plate theory in many aspects. It does not require the shear correction factor, and gives rise to the transverse shear stress variation so that the transverse shear stresses vary parabolically across the thickness to satisfy free surface conditions for the shear stress. It is established that the volume fraction of porosity significantly affect the mechanical behavior of thick function ally graded plates. The validity of the two new theories is shown by comparing the present results with other higher-order theories. The influence of material parameter, the volume fraction of porosity and the thickness ratio on the behavior mechanical P-FGM plate are represented by numerical examples.

키워드

참고문헌

  1. Abdelhak Z., Hadji, L, Daouadji, T.H. and Bedia, E.A. (2015), "Thermal buckling of functionally graded plates using an-order four variable refined theory", Adv. Mater. Res., 4(1), 31-44. https://doi.org/10.12989/amr.2015.4.1.31
  2. Adim, B., Hassaine D.T. and Rabahi A. (2016), "A simple higher order shear deformation theory for mechanical behavior of laminated composite plates", J. Adv. Struct. Eng., 8(2), 103-117. https://doi.org/10.1007/s40091-016-0109-x
  3. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2015), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandwich Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  4. Baghdadi, H., Tounsi, A., Zidour, M. and Benzair, A. (2015), "Thermal effect on vibration characteristics of armchair and zigzag single-walled carbon nanotubes using nonlocal parabolic beam theory", Nanotub. Carbon Nanostruct., 23(3), 266-272. https://doi.org/10.1080/1536383X.2013.787605
  5. Bellifa, H., Benrahou, K., Houari, S.A. and Tounsi, A. (2015), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Brazil. Soc. Mech. Sci. Eng., 38(1), 265-275.
  6. Benferhat, R., Daouadji, T.H. and Mansour, M.S. (2015), "A higher order shear deformation model for bending analysis of functionally graded plates", Trans. Indian Institut. Metals., 68(1), 7-16. https://doi.org/10.1007/s12666-014-0428-1
  7. Bensattalah, T., Zidour, M., Tounsi, A. and Bedia, E.A.A. (2016), "Investigation of thermal and chirality effects on vibration of single-walled carbon anotubes embedded in a polymeric matrix using nonlocal elasticity theories", Mech. Compos. Mater., 52(4), 1-14. https://doi.org/10.1007/s11029-016-9553-8
  8. Benyoucef, S., Mechab, I., Tounsi, A., Fekrar, A., Ait, A.H., Adda, B.E. (2010), "Bending of thick functionally graded plates resting on winkler-pasternak elastic foundations", Mech. Compos. Mater., 46(4), 425-434. https://doi.org/10.1007/s11029-010-9159-5
  9. Bouazza, M., Amara, K., Zidour, M., Tounsi, A. and Adda, B.E. (2015), "Postbuckling analysis of functionally graded beams using hyperbolic shear deformation theory", Rev. Informat. Eng. Appl., 2(1), 1-14. https://doi.org/10.1186/s40535-014-0004-0
  10. Bouazza, M., Amara, K., Zidour, M., Tounsi, A. and Adda, B.E. (2015), "Postbuckling analysis of nanobeams using trigonometric Shear deformation theory", Appl. Sci. Rep., 10(2), 112-121.
  11. Bouazza, M., Amara, K., Zidour, M., Tounsi, A. and Adda, B.E. (2014), "Hygrothermal effects on the postbuckling response of composite beams", Am. J. Mater. Res., 1(2), 35-43.
  12. Boumia, L., Zidour, M., Benzair, A. and Tounsi, A. (2014), "A timoshenko beam model for vibration analysis of chiral single-walled carbon nanotubes", Phys. E: Low-dimens. Syst. Nanostruct., 59, 186-191. https://doi.org/10.1016/j.physe.2014.01.020
  13. Bourada, M., Kaci, A., Houari, S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  14. Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4
  15. Gafour, F., Zidour, M., Tounsi, A., Heireche, H. and Semmah, A. (2015), "Sound wave propagation in zigzag double-walled carbon nanotubes embedded in an elastic medium using nonlocal elasticity theory", Phys. E: Low-dimens. Syst. Nanostruct. 48, 118-123.
  16. Hamidi, A., Houari, S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  17. Daouadji, T.H., Hadji, L., Hadji, A., Henni, A.H. and El Abbes, A.B. (2012), "A theoretical analysis for static and dynamic behavior of functionally graded plates", Mater. Phys. Mech., 14(2), 110-128.
  18. Daouadji, T.H., Benferhat, R. and Adim B. (2016), "A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load", Adv. Mater. Res., 5(2), 107-123. https://doi.org/10.12989/amr.2016.5.2.107
  19. Daouadji, T.H. and Tounsi, A. (2013), "Analytical solution for bending analysis of functionally graded plates", Sci. Iran., Trans. B: Mech. Eng., 20(3), 516-523.
  20. Daouadji T.H., Henni, A.H., Tounsi, A. and El Abbes, A.B. (2013), "Elasticity solution of a cantilever functionally graded beam", Appl. Compos. Mater., 20(1), 1-15. https://doi.org/10.1007/s10443-011-9243-6
  21. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity", J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
  22. Kerr, A.D. (1964), "Elastic and viscoelastic foundation models", ASME J. Appl. Mech., 31(3), 491-498. https://doi.org/10.1115/1.3629667
  23. Kobayashi, H. and Sonoda, K. (1989), "Rectangular mindlin plates on elastic foundations", J. Mech. Sci., 31(9), 679-692. https://doi.org/10.1016/S0020-7403(89)80003-7
  24. Koizumi, M. (1992), "The concept of FGM", 34, 3-10.
  25. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B: Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
  26. Lam, K.Y., Wang, C.M. and He, X.Q. (2000), "Canonical exact solutions for Levy-plates on two-parameter foundation using Green's functions", Eng. Struct., 22(4), 364-378. https://doi.org/10.1016/S0141-0296(98)00116-3
  27. Mahi, A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  28. Mantari, J.L. and Soares, C.G. (2014), "A trigonometric plate theory with 5-unknowns and stretching effect for advanced composite plates", Compos. Struct., 107, 396-405. https://doi.org/10.1016/j.compstruct.2013.07.046
  29. Meksi, A., Benyoucef, S., Houari, M.S.A. and Tounsi, A. (2015), "A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations", Struct. Eng. Mech., 53(6), 1215-1240. https://doi.org/10.12989/sem.2015.53.6.1215
  30. Naceri, M., Zidour, M., Semmah, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2012), "Sound wave propagation in armchair single walled carbon nanotubes under thermal environment", J. Appl. Phys., 110(12), 124-132.
  31. Pasternak, P.L. (1954), On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants, Gosudarstvennoe Izdatelstvo Literaturi Po Stroitelstvu I Arkhitekture, Moscow, Russia.
  32. Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vibr., 321(1), 342-362. https://doi.org/10.1016/j.jsv.2008.09.018
  33. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  34. Shen, H.S. and Wang, Z.X. (2010), "Nonlinear bending of FGM plates subjected to combined loading and resting on elastic foundations", Compos. Struct., 92(10), 2517-2524. https://doi.org/10.1016/j.compstruct.2010.02.010
  35. Suresh, S. and Mortensen, A. (1998), Fundamentals of Functionally Graded Materials, IOM Communications, London, U.K.
  36. Tlidji, Y., Daouadji T.H., Hadji, L., Tounsi, A. and Bedia E.A.A. (2014), "Elasticity solution for bending response of functionally graded sandwich plates under thermo mechanical loading", J. Therm. Stress., 37(7), 852-869. https://doi.org/10.1080/01495739.2014.912917
  37. Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des., 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049
  38. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aero. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002
  39. Xiang, Y., Wang, C.M. and Kitipornchai, S. (1994), "Exact vibration solution for initially stressed mindlin plates on pasternak foundation", J. Mech. Sci., 36(4), 311-316. https://doi.org/10.1016/0020-7403(94)90037-X
  40. Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded materials", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009
  41. Zenkour, A.M. (2010), "Hygro-thermo-mechanical effects on FGM plates resting on elastic foundations", Compos. Struct., 93(1), 234-238. https://doi.org/10.1016/j.compstruct.2010.04.017
  42. Zhou, D., Cheung, Y.K., Lo, S.H. and Au, F.T.K. (2004), "Three-dimensional vibration analysis of rectangular thick plates on pasternak foundations", J. Numer. Methods Eng., 59(10),1313-1334. https://doi.org/10.1002/nme.915
  43. Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68(1), 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2
  44. Zidour, M., Benrahou, K.H., Tounsi, A., Bedia, E.A.A. and Hadji, L. (2014), "Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal timoshenko beam theory", Mech. Compos. Mater., 50(1), 95-104. https://doi.org/10.1007/s11029-014-9396-0

피인용 문헌

  1. Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates vol.7, pp.2, 2016, https://doi.org/10.12989/amr.2018.7.2.119
  2. Nonlinear thermoelastic analysis of FGM thick plates vol.8, pp.5, 2016, https://doi.org/10.12989/csm.2019.8.5.439
  3. Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate vol.16, pp.5, 2016, https://doi.org/10.12989/eas.2019.16.5.601
  4. Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions vol.70, pp.5, 2019, https://doi.org/10.12989/sem.2019.70.5.535
  5. Interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate plate: Analytical and numerical study vol.8, pp.3, 2016, https://doi.org/10.12989/amr.2019.8.3.197
  6. Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations vol.72, pp.1, 2016, https://doi.org/10.12989/sem.2019.72.1.061
  7. Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study vol.72, pp.4, 2019, https://doi.org/10.12989/sem.2019.72.4.409
  8. Improved analytical solution for slip and interfacial stress in composite steel-concrete beam bonded with an adhesive vol.9, pp.2, 2016, https://doi.org/10.12989/amr.2020.9.2.133
  9. Bending behaviour of FGM plates via a simple quasi-3D and 2D shear deformation theories vol.9, pp.3, 2020, https://doi.org/10.12989/csm.2020.9.3.237
  10. Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model vol.26, pp.2, 2020, https://doi.org/10.12989/sss.2020.26.2.253