DOI QR코드

DOI QR Code

Strongly coupling partitioned scheme for enhanced added mass computation in 2D fluid-structure interaction

  • Lefrancois, Emmanuel (Roberval Laboratory CNRS UMR 7337, Universite de Technologie de Compiegne - Sorbonne Universites) ;
  • Brandely, Anais (Roberval Laboratory CNRS UMR 7337, Universite de Technologie de Compiegne - Sorbonne Universites) ;
  • Mottelet, Stephane (TIMR Laboratory EA 4297, Universite de Technologie de Compiegne - Sorbonne Universites)
  • 투고 : 2016.09.01
  • 심사 : 2016.12.17
  • 발행 : 2016.09.25

초록

A numerical model for fluid-structure interactions (abbr. FSI) is presented in the context of sloshing effects in movable, partially filled tanks to improve understanding of interactions between the fluid and the dynamics of a tank flexibly attached to a vehicle. The purpose of this model is to counteract the penalizing impact of the added mass effect on classical partitioned FSI coupling scheme: the proposed investigation is based on an added mass corrected version of the classical strongly coupled partitioned scheme presented in (Song et al. 2013). Results show that this corrected version systematically allows convergence to the coupled solution. In the rare cases where convergence is already obtained, the corrected version significantly reduces the number of iterations required. Finally, it is shown that the convergence limit imposed by added mass effect for the non-corrected coupling scheme, is directly dependent on the aspect ratio of the fluid domain and highly related to the precision order of the temporal discretization scheme.

키워드

참고문헌

  1. Baek, H., Karniadakis, G.E. (2012), "A convergence study of a new partitioned fluid-structure interaction algorithm based on fictitious mass and damping", J. Comput. Phys., 231(2), 629-652. https://doi.org/10.1016/j.jcp.2011.09.025
  2. Brandely, A. and Lefrançois, E. (2015), "A numerical investigation of the added mass effect due to fluidstructure coupling in a rectangular tank", VI International Conference on Computational Methods for Coupled Problems in Science and Engineering, 18 - 20 May 2015, Venice, Italy.
  3. van Brummelen, E.H. (2009), "Added mass effects of compressible and incompressible flows in fluid-structure interaction", J. Appl. Mech., 76(2), 021206-7. https://doi.org/10.1115/1.3059565
  4. Chiba, M., Chiba, S. and Takemura, K. (2013), "Coupled hydroelastic vibrations of a liquid on flexible space structures under zero-gravity-Part I. Mechanical model", Coupled Syst. Mech., 2(4), 303-327. https://doi.org/10.12989/csm.2013.2.4.303
  5. Dhatt, G., Touzot, G. and Lefrançois, E. (2012), Finite Element Method, Wiley-ISTE.
  6. Felippa, C.A., Park, K.C. and Farhat, C. (2001), "Partitioned analysis of coupled mechanical systems", Comput. Meth. Appl. Mech. and Eng., 190(24), 3247-3270. https://doi.org/10.1016/S0045-7825(00)00391-1
  7. Fernandez, M.A., Gerbeau, J.-F. and Grandmont, C. (2005), "A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid", Int. J. Numer. Meth. Eng., 69(4), 794-821. https://doi.org/10.1002/nme.1792
  8. He, T. (2015), "Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes", Wind Struct., 20(3), 423-448. https://doi.org/10.12989/was.2015.20.3.423
  9. Idelsohn, S.R., Del Pin, F., Rossi, R. and Onate, E. (2009), "Fluid-structure interaction problems with strong added-mass effect", Int. J. Numer. Meth. Eng., 80(10), 1261-1294. https://doi.org/10.1002/nme.2659
  10. Kassiotis, C., Ibrahimbegovic, A. and Matthies, H. (2010), "Partitioned solution to fluid-structure interaction problem in application to free-surface flow", Eur. J. Mech., Part B: Fluids, 29(6), 510-521. https://doi.org/10.1016/j.euromechflu.2010.07.003
  11. Kassiotis, C., Ibrahimbegovic, A., Niekamp, R. and Matthies, H. (2011), "Partitioned solution to nonlinear fluid-structure interaction problems. Part I: implicit coupling algorithms and stability proof", Comput. Mech., 47, 305-323. https://doi.org/10.1007/s00466-010-0545-6
  12. Keivani, A., Shooshtari, A. and Aftabi Sani, A. (2014), "Forced vibration analysis of a dam-reservoir interaction problem in frequency domain", Coupled Syst. Mech., 3(4), 385-403. https://doi.org/10.12989/csm.2014.3.4.385
  13. Khezzar, L., Seibi, A.C. and Goharzadeh, A. (2009), "Water sloshing In rectangular tanks aAS An experimental investigation & Numerical simulation", Int. J. Eng., 3(3), 1-11.
  14. Liu, D. and Lin, P. (2009), "Three-dimensional liquid sloshing in a tank with baffles", Ocean Eng., 36(2), 202-212 https://doi.org/10.1016/j.oceaneng.2008.10.004
  15. Morand, H.J.-P. and Ohayon, R. (1995), Fluid-Structure Interaction: Applied Numerical Methods, Wiley.
  16. Mottelet, S. (2000), "Controllability and stabilization of a canal with wave generators", SIAM J. Control Optimiz., 38(3), 711-735. https://doi.org/10.1137/S0363012998347134
  17. Nagashima, T. and Tsukuda, T. (2013), "Seismic response analysis of an oil storage tank using Lagrangian fluid elements", Coupled Syst. Mech., 2(4), 389-410. https://doi.org/10.12989/csm.2013.2.4.389
  18. Raj, R.T.K., Bageerathan, T. and Edison, G. (2014), "Design of fuel tank baffles to reduce kinetic energy produced by fuel sloshing and to enhance the product life cycle", ARPN J. Eng. Appl Sci., 9(3).
  19. Raouf A. Ibrahim (2005), Liquid Sloshing Dynamics: Theory and Applications, Ed. Cambridge.
  20. Song, M., Lefrançois, E. and Rachik, M. (2013), "Development of a partitioned algorithm for fluid-structure coupling with no fluid density dependency", Comput. Fluids, doi: 10.1016/j.compfluid.2013.05.022.
  21. Sy, S. and Murea, C.M. (2012), "Algorithm for solving fluid-structure interaction problem on a global moving mesh", Coupled Syst. Mech., 1(1), 99-113. https://doi.org/10.12989/csm.2012.1.1.099
  22. Veldman, A.E.P., Gerrits, J., Luppes, R., Helder, J.A. and Vreeburg, J.P.B. (2007), "The numerical simulation of liquid sloshing on board spacecraft", J. Comput. Phys., 224(6), 82-99. https://doi.org/10.1016/j.jcp.2006.12.020
  23. Wachowski, C., Biermann, J.-W. and Schala, R. (2010), "Approaches to analyse and predict slosh noise of vehicle fuel tanks", Proceedings, ISMA2010.
  24. Wang, W., Li-xiang, Z., Yan, Y. and Guo, Y. (2012), "Combined multi-predict-correct iterative method for interaction between pulsatile flow and large deformation structure", Coupled Syst. Mech., 1(4), 361-379. https://doi.org/10.12989/csm.2012.1.4.361

피인용 문헌

  1. How an added mass matrix estimation may dramatically improve FSI calculations for moving foils vol.51, 2017, https://doi.org/10.1016/j.apm.2017.07.022
  2. Hydrodynamic coupling distance between a falling sphere and downstream wall vol.7, pp.4, 2016, https://doi.org/10.12989/csm.2018.7.4.407
  3. A hybrid model for simulation of fluid-structure interaction in water entry problems vol.33, pp.1, 2016, https://doi.org/10.1063/5.0031681