References
- Baek, H., Karniadakis, G.E. (2012), "A convergence study of a new partitioned fluid-structure interaction algorithm based on fictitious mass and damping", J. Comput. Phys., 231(2), 629-652. https://doi.org/10.1016/j.jcp.2011.09.025
- Brandely, A. and Lefrançois, E. (2015), "A numerical investigation of the added mass effect due to fluidstructure coupling in a rectangular tank", VI International Conference on Computational Methods for Coupled Problems in Science and Engineering, 18 - 20 May 2015, Venice, Italy.
- van Brummelen, E.H. (2009), "Added mass effects of compressible and incompressible flows in fluid-structure interaction", J. Appl. Mech., 76(2), 021206-7. https://doi.org/10.1115/1.3059565
- Chiba, M., Chiba, S. and Takemura, K. (2013), "Coupled hydroelastic vibrations of a liquid on flexible space structures under zero-gravity-Part I. Mechanical model", Coupled Syst. Mech., 2(4), 303-327. https://doi.org/10.12989/csm.2013.2.4.303
- Dhatt, G., Touzot, G. and Lefrançois, E. (2012), Finite Element Method, Wiley-ISTE.
- Felippa, C.A., Park, K.C. and Farhat, C. (2001), "Partitioned analysis of coupled mechanical systems", Comput. Meth. Appl. Mech. and Eng., 190(24), 3247-3270. https://doi.org/10.1016/S0045-7825(00)00391-1
- Fernandez, M.A., Gerbeau, J.-F. and Grandmont, C. (2005), "A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid", Int. J. Numer. Meth. Eng., 69(4), 794-821. https://doi.org/10.1002/nme.1792
- He, T. (2015), "Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes", Wind Struct., 20(3), 423-448. https://doi.org/10.12989/was.2015.20.3.423
- Idelsohn, S.R., Del Pin, F., Rossi, R. and Onate, E. (2009), "Fluid-structure interaction problems with strong added-mass effect", Int. J. Numer. Meth. Eng., 80(10), 1261-1294. https://doi.org/10.1002/nme.2659
- Kassiotis, C., Ibrahimbegovic, A. and Matthies, H. (2010), "Partitioned solution to fluid-structure interaction problem in application to free-surface flow", Eur. J. Mech., Part B: Fluids, 29(6), 510-521. https://doi.org/10.1016/j.euromechflu.2010.07.003
- Kassiotis, C., Ibrahimbegovic, A., Niekamp, R. and Matthies, H. (2011), "Partitioned solution to nonlinear fluid-structure interaction problems. Part I: implicit coupling algorithms and stability proof", Comput. Mech., 47, 305-323. https://doi.org/10.1007/s00466-010-0545-6
- Keivani, A., Shooshtari, A. and Aftabi Sani, A. (2014), "Forced vibration analysis of a dam-reservoir interaction problem in frequency domain", Coupled Syst. Mech., 3(4), 385-403. https://doi.org/10.12989/csm.2014.3.4.385
- Khezzar, L., Seibi, A.C. and Goharzadeh, A. (2009), "Water sloshing In rectangular tanks aAS An experimental investigation & Numerical simulation", Int. J. Eng., 3(3), 1-11.
- Liu, D. and Lin, P. (2009), "Three-dimensional liquid sloshing in a tank with baffles", Ocean Eng., 36(2), 202-212 https://doi.org/10.1016/j.oceaneng.2008.10.004
- Morand, H.J.-P. and Ohayon, R. (1995), Fluid-Structure Interaction: Applied Numerical Methods, Wiley.
- Mottelet, S. (2000), "Controllability and stabilization of a canal with wave generators", SIAM J. Control Optimiz., 38(3), 711-735. https://doi.org/10.1137/S0363012998347134
- Nagashima, T. and Tsukuda, T. (2013), "Seismic response analysis of an oil storage tank using Lagrangian fluid elements", Coupled Syst. Mech., 2(4), 389-410. https://doi.org/10.12989/csm.2013.2.4.389
- Raj, R.T.K., Bageerathan, T. and Edison, G. (2014), "Design of fuel tank baffles to reduce kinetic energy produced by fuel sloshing and to enhance the product life cycle", ARPN J. Eng. Appl Sci., 9(3).
- Raouf A. Ibrahim (2005), Liquid Sloshing Dynamics: Theory and Applications, Ed. Cambridge.
- Song, M., Lefrançois, E. and Rachik, M. (2013), "Development of a partitioned algorithm for fluid-structure coupling with no fluid density dependency", Comput. Fluids, doi: 10.1016/j.compfluid.2013.05.022.
- Sy, S. and Murea, C.M. (2012), "Algorithm for solving fluid-structure interaction problem on a global moving mesh", Coupled Syst. Mech., 1(1), 99-113. https://doi.org/10.12989/csm.2012.1.1.099
- Veldman, A.E.P., Gerrits, J., Luppes, R., Helder, J.A. and Vreeburg, J.P.B. (2007), "The numerical simulation of liquid sloshing on board spacecraft", J. Comput. Phys., 224(6), 82-99. https://doi.org/10.1016/j.jcp.2006.12.020
- Wachowski, C., Biermann, J.-W. and Schala, R. (2010), "Approaches to analyse and predict slosh noise of vehicle fuel tanks", Proceedings, ISMA2010.
- Wang, W., Li-xiang, Z., Yan, Y. and Guo, Y. (2012), "Combined multi-predict-correct iterative method for interaction between pulsatile flow and large deformation structure", Coupled Syst. Mech., 1(4), 361-379. https://doi.org/10.12989/csm.2012.1.4.361
Cited by
- How an added mass matrix estimation may dramatically improve FSI calculations for moving foils vol.51, 2017, https://doi.org/10.1016/j.apm.2017.07.022
- Hydrodynamic coupling distance between a falling sphere and downstream wall vol.7, pp.4, 2016, https://doi.org/10.12989/csm.2018.7.4.407
- A hybrid model for simulation of fluid-structure interaction in water entry problems vol.33, pp.1, 2016, https://doi.org/10.1063/5.0031681