참고문헌
- Accelrys, I. (2010), Materials Studio. Accelrys Software Inc.
- Al-Ostaz, A., Wu, W., Cheng, A.D. and Song, C. (2010), "A molecular dynamics and microporomechanics study on the mechanical properties of major constituents of hydrated cement", Compos. Eng., 41(7), 543-549. https://doi.org/10.1016/j.compositesb.2010.06.005
- Astm, C. (2006), Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, PA: Annual Book of ASTM Standards, Philadelphia, U.S.A.
- Bauchy, M., Qomi, M., Pellenq, R. and Ulm, F. (2014), "Is cement a glassy material", Comput. Modell. Concrete Struct., 169.
-
Brehm, D. (2007), Nanoengineered Concrete Could Cut World
$CO_2$ , Department of Civil and Environmental Engineering Brochure on Balance. - Buenfeld, N.R., Glass, G.K., Hassanein, A.M. and Zhang, J.Z. (1998), "Chloride transport in concrete subjected to electric field", J. Mater. Civil Eng., 10(4), 220-228. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:4(220)
- Du, X., Jin, L. and Zhang, R. (2015), "Chloride diffusivity in saturated cement paste subjected to external mechanical loadings", Ocean Eng., 95, 1-10. https://doi.org/10.1016/j.oceaneng.2014.11.028
- Einstein, A. (1956), Investigations on the Theory of the Brownian Movement, Courier Corporation.
- El Amrani, S. and Kolb, M. (1993), "Molecular dynamics simulations in zeolites: From deterministic to random motion", J. Chem. Phys., 98(2), 1509-1513. https://doi.org/10.1063/1.464315
- Fratini, E., Faraone, A., Ridi, F., Chen, S.H. and Baglioni, P. (2013), "Hydration water dynamics in tricalcium silicate pastes by time-resolved incoherent elastic neutron scattering", J. Phys. Chem. C, 117(14), 7358-7364. https://doi.org/10.1021/jp312684p
- Garboczi, E. and Bentz, D. (1992), "Computer simulation of the diffusivity of cement-based materials", J. Mater. Sci., 27(8), 2083-2092. https://doi.org/10.1007/BF01117921
- Gopalakrishnan, K., Birgisson, B., Taylor, P. and Attoh-Okine, N.O. (2011), Nanotechnology in Civil Infrastructure, Springer.
- Haile, J. (1992), Molecular Dynamics Simulation, Wiley, New York, U.S.A.
- Hajilar, S. and Shafei, B. (2015), "Nano-scale investigation of elastic properties of hydrated cement paste constituents using molecular dynamics simulations", Comput. Mater. Sci., 101, 216-226. https://doi.org/10.1016/j.commatsci.2014.12.006
- Hamid, S. (1981), "The crystal structure of the a natural tobermorite ca2. 25 [Si3O7.5 (OH) 1.5].1H2O", Zeitschrift Fur Kristallographie-Crystal. Mater., 154(1-4), 189-198.
- Hendriks, C.A., Worrell, E., De Jager, D., Blok, K. and Riemer, P. (1998), "Emission reduction of greenhouse gases from the cement industry", Proceedings of the Fourth International Conference on Greenhouse Gas Control Technologies, U.K., August.
- Hou, D. and Li, Z. (2014), "Molecular dynamics study of water and ions transport in nano-pore of layered structure: A case study of tobermorite", Micropor. Mesop. Mater., 195, 9-20. https://doi.org/10.1016/j.micromeso.2014.04.011
- Hou, D., Zhu, Y., Lu, Y. and Li, Z. (2014), "Mechanical properties of calcium silicate hydrate (C-S-H) at nano-scale: A molecular dynamics study", Mater. Chem. Phys., 146(3), 503-511. https://doi.org/10.1016/j.matchemphys.2014.04.001
- Kalinichev, A.G. and Kirkpatrick, R.J. (2002), "Molecular dynamics modeling of chloride binding to the surfaces of calcium hydroxide, hydrated calcium aluminate, and calcium silicate phases", Chem. Mater., 14(8), 3539-3549. https://doi.org/10.1021/cm0107070
- Kalinichev, A.G., Wang, J. and Kirkpatrick, R.J. (2007), "Molecular dynamics modeling of the structure, dynamics and energetics of mineral-water interfaces: Application to cement materials", Cement Concrete Res., 37(3), 337-347. https://doi.org/10.1016/j.cemconres.2006.07.004
- Kantro, D.L., Brunauer, S. and Weise, C.H. (1962), "Development of surface in the hydration of calcium silicates. II. Extension of investigations to earlier and later stages of hydration", J. Phys. Chem., 66(10), 1804-1809. https://doi.org/10.1021/j100816a007
- Keffer, D. (2001), "The working man's guide to obtaining self diffusion coefficients from molecular dynamics simulations", Department of Chemical Engineering, University of Tennessee, Knoxville, U.S.A.
- Kirkpatrick, R., Kalinichev, A. and Wang, J. (2005), "Molecular dynamics modelling of hydrated mineral interlayers and surfaces: Structure and dynamics", Mineral. Mag., 69(3), 289-308. https://doi.org/10.1180/0026461056930251
- Kirkpatrick, R.J., Kalinichev, A. and Yu, P. (2001), "Chloride binding to cement phases: Exchange isotherm, exp 35 CI NMR and molecular dynamics modeling studies", Mater. Sci. Concrete Spec., 77-92.
- Korb, J.P., Monteilhet, L., Mcdonald, P. and Mitchell, J. (2007), "Microstructure and texture of hydrated cement-based materials: A proton field cycling relaxometry approach", Cement Concrete Res., 37(3), 295-302. https://doi.org/10.1016/j.cemconres.2006.08.002
-
Kurczyk, H. and Schwiete, H. (1960), "Concerning the hydration products of C3S and
${\beta}-C2S$ ", Proceedings of the 4th International Symposium on the Chemistry of Cement, 1, 349-358. - Manzano, H., Dolado, J., Guerrero, A. and Ayuela, A. (2007), "Mechanical properties of crystalline calcium-silicate-hydrates: Comparison with cementitious C-S-H gels", Phys. Stat. Solid., 204(6), 1775-1780. https://doi.org/10.1002/pssa.200675359
- Marrink, S.J. and Berendsen, H.J. (1994), "Simulation of water transport through a lipid membrane", J. Phys. Chem., 98(15), 4155-4168. https://doi.org/10.1021/j100066a040
- Merlino, S., Bonaccorsi, E. and Armbruster, T. (1999), "Tobermorites: Their real structure and order-disorder (OD) character", Am. Mineral., 84(10), 1613-1621. https://doi.org/10.2138/am-1999-1015
- Mindess, S., Young, J.F. and Darwin, D. (2003), Concrete, Prentice Hall.
- Miyandehi, B.M., Behforouz, B., Khotbehsara, E.M., Balgouri, H.A., Fathi, S. and Khotbehsara, M.M. (2014), "An experimental investigation on nano-Al2O3 based self-compacting mortar", J. Am. Sci., 10(11).
- Moreno, M., Morris, W., Alvarez, M. and Duffo, G. (2004), "Corrosion of reinforcing steel in simulated concrete pore solutions: Effect of carbonation and chloride content", Corros. Sci., 46(11), 2681-2699. https://doi.org/10.1016/j.corsci.2004.03.013
- Murray, S., Subramani, V., Selvam, R. and Hall, K. (2010), "Molecular dynamics to understand the mechanical behavior of cement paste", J. Trans. Res. Board, (2142), 75-82.
- Pan, T. and Liu, Y. (2009), "Computational molecular analysis of chloride transport in hydrated cement paste", J. Trans. Res. Board, (2113), 31-40.
- Pan, T., Xia, K. and Wang, L. (2010), "Chloride binding to calcium silicate hydrates (CSH) in cement paste: A molecular dynamics analysis", J. Pave. Eng., 11(5), 367-379. https://doi.org/10.1080/10298436.2010.488732
- Park, B., Jang, S.Y., Cho, J.Y. and Kim, J.Y. (2014), "A novel short-term immersion test to determine the chloride ion diffusion coefficient of cementitious materials", Constr. Build. Mater., 57, 169-178. https://doi.org/10.1016/j.conbuildmat.2014.01.086
- Pivonka, P., Hellmich, C. and Smith, D. (2004), "Microscopic effects on chloride diffusivity of cement pastes-a scale-transition analysis", Cement Concrete Res., 34(12), 2251-2260. https://doi.org/10.1016/j.cemconres.2004.04.010
- Qomi, M.A., Krakowiak, K.J., Bauchy, M., Stewart, K., Shahsavari, R., Jagannathan, D., Brommer, D.B., Baronnet, A., Buehler, M.J. and Yip, S. (2014), "Combinatorial molecular optimization of cement hydrates", Nat. Commun., 5.
- Richardson, I. and Groves, G. (1992), "Models for the composition and structure of calcium silicate hydrate (CSH) gel in hardened tricalcium silicate pastes", Cement Concrete Res., 22(6), 1001-1010. https://doi.org/10.1016/0008-8846(92)90030-Y
- Shpynova, L., Id, N. and Belov, N. (1967), "Microstructure of alite cement stone (hydrated tricalcium silicate)", Sov. Phys. Crystall.USSR, 11(6), 747.
- Sun, H. (1998), "Compass: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds", J. Phys. Chem., 102(38), 7338-7364. https://doi.org/10.1021/jp980939v
- Tarighat, A. (2012), "Stochastic modeling and calibration of chloride content profile in concrete based on limited available data", J. Civil Eng., 10(4), 309-316.
- Tarighat, A. and Zehtab, B. (2016), "Structural reliability of reinforced concrete beams/columns under simultaneous static loads and steel reinforcement corrosion", Arab. J. Sci. Eng., 41(10), 1-14. https://doi.org/10.1007/s13369-015-1722-x
- Tarighat, A., Zehtab, B. and Tavakoli, D. (2016), "An introductory review of simulation methods for the structure of cementitious material hydrates at different length scales", Pertan. J. Sci. Technol., 24(1), 27-39.
- Tavakoli, D. and Tarighat, A. (2016), "Molecular dynamics study on the mechanical properties of Portland cement clinker phases", Comput. Mater. Sci., 119, 65-73. https://doi.org/10.1016/j.commatsci.2016.03.043
- Taylor, H. and Howison, J. (1956), "Relationships between calcium silicates and clay minerals", Clay Miner. Bull, 3(16), 98-111. https://doi.org/10.1180/claymin.1956.003.16.06
- Yang, C. and Cho, S. (2003), "An electrochemical method for accelerated chloride migration test of diffusion coefficient in cement-based materials", Mater. Chem. Phys., 81(1), 116-125. https://doi.org/10.1016/S0254-0584(03)00159-7
- Yang, J., Mohseni, E., Behforouz, B. and Khotbehsara, M.M. (2015), "An experimental investigation into the effects of Cr2O3 and ZnO2 nanoparticles on the mechanical properties and durability of self-compacting mortar", J. Mater. Res., 106(8), 886-892.
- Yang, J.Z., Liu, Q.L. and Wang, H.T. (2007), "Analyzing adsorption and diffusion behaviors of ethanol/water through silicalite membranes by molecular simulation", J. Membr. Sci., 291(1), 1-9. https://doi.org/10.1016/j.memsci.2006.12.025
- Yoon, S. and Monteiro, P.J. (2013), "Molecular dynamics study of water molecules in interlayer of a tobermorite", J. Adv. Concrete Technol., 11(6), 180-188. https://doi.org/10.3151/jact.11.180
- Yu, P. and Kirkpatrick, R.J. (2001), "35 Cl NMR relaxation study of cement hydrate suspensions", Cement Concrete Res., 31(10), 1479-1485. https://doi.org/10.1016/S0008-8846(01)00595-6
- Zheng, J. and Zhou, X. (2008), "Analytical solution for the chloride diffusivity of hardened cement paste", J. Mater. Civil Eng., 20(5), 384-391. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:5(384)
피인용 문헌
- Numerical analysis of concrete degradation due to chloride-induced steel corrosion vol.7, pp.4, 2016, https://doi.org/10.12989/acc.2019.7.4.203
- Investigation of SCC characterizations incorporating supplementary cementitious materials vol.8, pp.3, 2016, https://doi.org/10.1680/jemmr.18.00024
- Multi-scale Approach from Atomistic to Macro for Simulation of the Elastic Properties of Cement Paste vol.44, pp.3, 2016, https://doi.org/10.1007/s40996-019-00288-6