References
- Arabi, N. and Jauberthie, R. (2012), "Calcium silicate materials: Substitution of hydrated lime by ground granulated blast furnace slag in autoclaving conditions", J. Mater. Civil Eng., 24(9), 1230-1236. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000480
- Atis, C.D. and Bilim, C. (2007), "Wet and dry cured compressive strength of concrete containing ground granulated blast-furnace slag", Build. Environ., 42(8), 3060-3065. https://doi.org/10.1016/j.buildenv.2006.07.027
- Bagheri, A.R., Zanganeh, H. and Moalemi, M.M. (2012), "Mechanical and durability properties of ternary concretes containing silica fume and low reactivity blast furnace slag", Cement Concrete Compos., 34(5), 663-670. https://doi.org/10.1016/j.cemconcomp.2012.01.007
- Bagheri, A. and Nazari, A. (2014), "Compressive strength of high strength class c fly ash-based geopolymers with reactive granulated blast furnace slag aggregates designed by Taguchi method", Mater. Des., 54, 483-490. https://doi.org/10.1016/j.matdes.2013.07.035
- Bernal, S.A., De Gutierrez, R.M. and Provis, J.L. (2012), "Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends", Constr. Build. Mater., 33, 99-108. https://doi.org/10.1016/j.conbuildmat.2012.01.017
- Binici, H., Aksogan, O., Gorur, E.B., Kaplan, H. and Bodur, M.N. (2008), "Performance of ground blast furnace slag and ground basaltic pumice concrete against seawater attack", Constr. Build. Mater., 22(7), 1515-1526. https://doi.org/10.1016/j.conbuildmat.2007.03.024
- Binici, H., Durgun, M.Y., Rizaoglu, T. and Kolucolak, M. (2012), "Investigation of durability properties of concrete pipes incorporating blast furnace slag and ground basaltic pumice as fine aggregates", Sci. Iran., 19(3), 366-372. https://doi.org/10.1016/j.scient.2012.04.007
- Cheng, A., Huang, R., Wu, J.K. and Chen, C.H. (2005), "Influence of GGBS on durability and corrosion behavior of reinforced concrete", Mater. Chem. Phys., 93(2), 404-411. https://doi.org/10.1016/j.matchemphys.2005.03.043
- Choi, S.J., Kim, S.H., Lee, S.J., Won, R. and Won, J.P. (2013), "Mix proportion of eco-friendly fireproof high-strength concrete", Constr. Build. Mater., 38, 181-187. https://doi.org/10.1016/j.conbuildmat.2012.07.103
- Deb, P.S., Nath, P. and Sarker, P.K. (2014), "The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature", Mater. Des., 62, 32-39. https://doi.org/10.1016/j.matdes.2014.05.001
- Deboucha, W., Oudjit, M.N., Bouzid, A. and Belagraa, L. (2015), "Effect of incorporating blast furnace slag and natural pozzolana on compressive strength and capillary water absorption of concrete", Proc. Eng., 108, 254-261. https://doi.org/10.1016/j.proeng.2015.06.145
- Dubey, A., Chandak, R. and Yadav, R.K. (2012), "Effect of blast furnace slag powder on compressive strength of concrete", J. Sci. Eng. Res., 3(8), I094-I098.
- Elahi, A., Basheer, P.A.M., Nanukuttan, S.V. and Khan, Q.U.Z. (2010), "Mechanical and durability properties of high performance concretes containing supplementary cementitious materials", Constr. Build. Mater., 24(3), 292-299. https://doi.org/10.1016/j.conbuildmat.2009.08.045
- Guo, X. and Shi, H. (2012), "Utilization of steel slag powder as a combined admixture with ground granulated blast-furnace slag in cement based materials", J. Mater. Civil Eng., 25(12), 1990-1993.
- Hadjsadok, A., Kenai, S., Courard, L., Michel, F. and Khatib, J. (2012), "Durability of mortar and concretes containing slag with low hydraulic activity", Cement Concrete Compos., 34(5), 671-677. https://doi.org/10.1016/j.cemconcomp.2012.02.011
- Higgins, D.D. (2003), "Increased sulfate resistance of ggbs concrete in the presence of carbonate", Cement Concrete Compos., 25(8), 913-919. https://doi.org/10.1016/S0958-9465(03)00148-3
- Hiraskar, K.G. and Patil, C. (2013), "Use of blast furnace slag aggregate in concrete", J. Sci. Eng., 4, 95-98.
- Jau, W.C. and Tsay, D.S. (1998), "A study of the basic engineering properties of slag cement concrete and its resistance to seawater corrosion", Cement Concrete Res., 28(10), 1363-1371. https://doi.org/10.1016/S0008-8846(98)00117-3
- Khatib, J.M. and Hibbert, J.J. (2005), "Selected engineering properties of concrete incorporating slag and metakaolin", Constr. Build. Mater., 19(6), 460-472. https://doi.org/10.1016/j.conbuildmat.2004.07.017
- Konsta-Gdoutos, M.S. and Shah, S.P. (2003), "Hydration and properties of novel blended cements based on cement kiln dust and blast furnace slag", Cement Concrete Res., 33(8), 1269-1276. https://doi.org/10.1016/S0008-8846(03)00061-9
- Kuo, W.T., Wang, H.Y. and Shu, C.Y. (2014), "Engineering properties of cementless concrete produced from GGBFS and recycled desulfurization slag", Constr. Build. Mater., 63, 189-196. https://doi.org/10.1016/j.conbuildmat.2014.04.017
- Li, J. and Yao, Y. (2001), "A study on creep and drying shrinkage of high performance concrete", Cement Concrete Res., 31(8), 1203-1206. https://doi.org/10.1016/S0008-8846(01)00539-7
- Lubeck, A., Gastaldini, A.L.G., Barin, D.S. and Siqueira, H.C. (2012), "Compressive strength and electrical properties of concrete with white Portland cement and blast-furnace slag", Cement Concrete Compos., 34(3), 392-399. https://doi.org/10.1016/j.cemconcomp.2011.11.017
- Mosavinezhad, S.H.G. and Nabavi, S.E. (2012), "Effect of 30% ground granulated blast furnace, lead and zinc slags as sand replacements on the strength of concrete", KSCE J. Civil Eng., 16(6), 989-993. https://doi.org/10.1007/s12205-012-1240-2
- Nath, P. and Sarker, P.K. (2014), "Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition", Constr. Build. Mater., 66, 163-171. https://doi.org/10.1016/j.conbuildmat.2014.05.080
- Oner, A. and Akyuz, S. (2007), "An experimental study on optimum usage of GGBS for the compressive strength of concrete", Cement Concrete Compos., 29(6), 505-514. https://doi.org/10.1016/j.cemconcomp.2007.01.001
- Pathan, V.G., Grhutke, V.S. and Pathan, G. (2012), "Evaluation of concrete properties using ground granulated blast furnace slag", J. lnnov. Res. Sci. Eng. Technol., 1(1), 71-79.
- Pavia, S.A.R.A. and Condren, E. (2008), "Study of the durability of OPC versus GGBS concrete on exposure to silage effluent", J. Mater. Civil Eng., 20(4), 313-320. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:4(313)
- Shafigh, P., Jumaat, M.Z., Mahmud, H.B. and Alengaram, U.J. (2013), "Oil palm shell lightweight concrete containing high volume ground granulated blast furnace slag", Constr. Build. Mater., 40, 231-238. https://doi.org/10.1016/j.conbuildmat.2012.10.007
- Shi, H.S., Xu, B.W. and Zhou, X.C. (2009), "Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete", Constr. Build. Mater., 23(5), 1980-1985. https://doi.org/10.1016/j.conbuildmat.2008.08.021
- Siddique, R. and Kaur, D. (2012), "Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures", J. Adv. Res., 3(1), 45-51. https://doi.org/10.1016/j.jare.2011.03.004
- Teng, S., Lim, T.Y.D. and Divsholi, B.S. (2013), "Durability and mechanical properties of high strength concrete incorporating ultra fine ground granulated blast-furnace slag", Constr. Build. Mater., 40, 875-881. https://doi.org/10.1016/j.conbuildmat.2012.11.052
- Topcu, I.B. and Boga, A.R. (2010), "Effect of ground granulate blast-furnace slag on corrosion performance of steel embedded in concrete", Mater. Des., 31(7), 3358-3365. https://doi.org/10.1016/j.matdes.2010.01.057
- Ujhelyi, J.E. and Ibrahim, A.J. (1991), "Hot weather concreting with hydraulic additives", Cement Concrete Res., 21(2), 345-354. https://doi.org/10.1016/0008-8846(91)90015-A
- Wainwright, P.J. and Rey, N. (2000), "The influence of ground granulated blastfurnace slag (GGBS) additions and time delay on the bleeding of concrete", Cement Concrete Compos., 22(4), 253-257. https://doi.org/10.1016/S0958-9465(00)00024-X
- Wang, H.Y. and Lin, C.C. (2013), "A study of fresh and engineering properties of self-compacting high slag concrete (SCHSC)", Constr. Build. Mater., 42, 132-136. https://doi.org/10.1016/j.conbuildmat.2012.11.020
- Xu, H., Gong, W., Syltebo, L., Izzo, K., Lutze, W. and Pegg, I.L. (2014), "Effect of blast furnace slag grades on fly ash based geopolymer waste forms", Fuel, 133, 332-340. https://doi.org/10.1016/j.fuel.2014.05.018
- Yeau, K.Y. and Kim, E.K. (2005), "An experimental study on corrosion resistance of concrete with ground granulate blast-furnace slag", Cement Concrete Res., 35(7), 1391-1399. https://doi.org/10.1016/j.cemconres.2004.11.010
- Yuksel, I., Bilir, T. and Ozkan, O. (2007), "Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate", Build. Environ., 42(7), 2651-2659. https://doi.org/10.1016/j.buildenv.2006.07.003
- Yusuf, M.O., Johari, M.A.M., Ahmad, Z.A. and Maslehuddin, M. (2014), "Strength and microstructure of alkali-activated binary blended binder containing palm oil fuel ash and ground blast-furnace slag", Constr. Build. Mater., 52, 504-510. https://doi.org/10.1016/j.conbuildmat.2013.11.012
Cited by
- Durability of self compacted concrete containing slag in hot climate vol.5, pp.3, 2017, https://doi.org/10.12989/acc.2017.5.3.271
- Permeability and mechanical properties of binary and ternary cementitious mixtures vol.5, pp.5, 2016, https://doi.org/10.12989/acc.2017.5.5.423
- Properties of concrete incorporating granulated blast furnace slag as fine aggregate vol.5, pp.5, 2017, https://doi.org/10.12989/acc.2017.5.5.437
- Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag vol.6, pp.2, 2016, https://doi.org/10.12989/acc.2018.6.2.103
- Copper or ferrous slag as substitutes for fine aggregates in concrete vol.6, pp.5, 2016, https://doi.org/10.12989/acc.2018.6.5.545
- Effect of ground granulated blast furnace slag on time-dependent tensile strength of concrete vol.23, pp.2, 2016, https://doi.org/10.12989/cac.2019.23.2.133
- Strength and abrasion resistance of roller compacted concrete incorporating GGBS and two types of coarse aggregates vol.8, pp.2, 2019, https://doi.org/10.12989/acc.2019.8.2.127
- Assessment of concrete properties with iron slag as a fine aggregate replacement vol.9, pp.6, 2016, https://doi.org/10.12989/acc.2020.9.6.589
- Green Concrete for a Circular Economy: A Review on Sustainability, Durability, and Structural Properties vol.14, pp.2, 2021, https://doi.org/10.3390/ma14020351