DOI QR코드

DOI QR Code

수질정화를 위한 다기능 인공식물섬의 개발과 적용

Development and Application of Multi-Functional Floating Wetland Island for Improving Water Quality

  • 윤영한 (한국건설기술연구원 환경플랜트연구소) ;
  • 임현만 (한국건설기술연구원 환경플랜트연구소) ;
  • 김원재 (한국건설기술연구원 환경플랜트연구소) ;
  • 정진홍 (한국건설기술연구원 환경플랜트연구소) ;
  • 박재로 (한국건설기술연구원 환경플랜트연구소)
  • Yoon, Younghan (Environmental and Plant Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Lim, Hyun Man (Environmental and Plant Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Weon Jae (Environmental and Plant Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Jung, Jin Hong (Environmental and Plant Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Jae-Roh (Environmental and Plant Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2016.11.29
  • 심사 : 2016.12.20
  • 발행 : 2016.12.31

초록

유속이 낮은 정체수역에 대하여 부영양화에 의한 녹조발생을 미연에 방지하고 수질개선을 도모하기 위하여 기존 인공식물섬 운영기술에 다양한 요소기술을 도입한 다기능 인공식물섬을 개발하였고 개발기술에 대한 성능검증을 위하여 경기도에 소재하는 하천에서 여름철과 겨울철 동안에 모니터링 하였다. 본 연구의 다기능 인공식물섬은 수질정화 기능을 높이기 위해서 정수식물 기반의 식생여과 공정 위주의 일반 인공식물섬 기술에 미세기포 공정과 인공여재에 의한 인 흡착/여과 공정을 추가하여 운영하였다. 개발기술에 대한 계절에 따른 오염물질 (COD, T-P) 제거율 변화로부터 오염부하가 낮은 겨울철 (15.9%, 20.0%)보다는 부하가 높은 여름철 (40.9%, 45.7%)에 높은 처리효율을 갖는 것으로 나타났고 공정별 제거율 (SS, Chl-a)에서는 미세기포 공정은 여름철 (33.1%, 39.2%)에, 인 흡착/여과 인공여재 및 식생여과 공정은 겨울철 (76.5%, 59.5%)에 높은 제거효율을 갖는 것으로 분석되어 다기능 인공식물섬의 정화능은 계절별 변화 또는 오염부하 정도에 따라서 적용 기술별로 제거능을 나타내어 지속적인 모니터링이 필요할 것으로 사료되었다. 또한, 인공식물섬 주변의 생태변화 분석결과, 식물섬 저부에 미세기포의 공급으로 용존산소가 증가됨으로써 혐기화에 의한 물질환원 현상을 방지하고 수류순환을 유도하여 친환경적인 새로운 수생태계가 조성되는 것을 확인하였고 이러한 결과들을 통하여 다기능 인공식물섬에 의하여 정체수역의 수질이 개선되고 다양한 동식물의 성장으로 정체수역 저부의 물질순환이 개선될 수 있는 가능성을 확인하였다.

Multi-functional floating wetland island (mFWI) was developed in order to prevent algal bloom and to improve water quality through several unit purification processes. A test bed was applied in the stagnant watershed in an urban area, from the summer to the winter season. For the advanced treatment, an artificial phosphorus adsorption/filtration medium was applied with micro-bubble generation, as well as water plants for nutrient removal. It appeared that the efficiency of chemical oxygen demand (COD) and total phosphorus (T-P) removal was higher in the warmer season (40.9%, 45.7%) than in the winter (15.9%, 20.0%), and the removal performance (suspended solid, chlorophyll a) in each process differs according to seasonal variation; micro-bubble performed better (33.1%, 39.2%) in the summer, and the P adsorption/filtration and water plants performed better (76.5%, 59.5%) in the winter season. From the results, it was understood that the mFWI performance was dependent upon the pollutant loads in different seasons and unit processes, and thus it requires continuous monitoring under various conditions to evaluate the functions. In addition, micro-bubbles helped prevent the formation of anaerobic zones in the lower part of the floating wetland. This resulted in the water circulation to form a new healthy aquatic ecosystem in the surrounding environment, which confirmed the positive influence of mFWI.

키워드

참고문헌

  1. Choi, M.J., Park, H.K., Byun, M.S., Jun, N.H. and Yun, S.H. 2010. Comparison of the growth of hydrophytes, aquatic biota and absorption of nutrient depending on the planting mat type of artificial vegetation island. Journal of Korean Society on Water Quality 26: 52-60. (in Korean)
  2. Hubbard, R.K., Anderson, W.F., Newton, G.L., Ruter, J.M. and Wilson, J.P. 2011. Plant growth and elemental uptake by floating vegetation on a single-stage swine wastewater lagoon. Transactions of the American Society of Agricultural and Biological Engineers 54: 837-845.
  3. Chung, Y., Kwon, S.P. and Choi, Y.H. 1994. Application of dissolved air flotation for water treatment. KSWST Journal of Water Treatment 2: 81-96. (in Korean)
  4. Kim, H.J., Kim, C.W. and Woo, H.S. 2003. Effects and alternatives influenced to ecological development of river-crossing structure. Journal of Korean Society of Civil Engineering 51: 42-58. (in Korean)
  5. Kim, T.J., Jun, J.C., Seo, R.B., Kim, H.M., Kim, D.G., Jun, Y.S., Park, S.W., Lee, S.Y., Park, J.J., Lee, J.H., Lee, J.J. and Lee, E.J. 2014. An initiative study on relationship between algal blooms and Asian dust for regulation of algal blooms. Korean Society for Biotechnology and Bioengineering Journal 29: 285-296. (in Korean)
  6. Kim, Y. and Jang, C. 2011. Production technology, property and application of artificial lightweight aggregates. International Journal of Concrete Structures and Materials 23: 14-17.
  7. Kim, Y.J., Huh, J.G., Nam, J.H., Kim, I.S., Choi, K.S., Choi, S.I. and Ahn, T.S. 2007. Bacterial abundances and enzymatic activities in the pore water of media of artificial floating island in Lake Paro. The Korean Journal of Microbiology 43: 40-46. (in Korean)
  8. Lee, K.S., Jang, J.R., Kim, Y.K. and Park, B.H. 1999. A study on the floating island for water quality improvement of a reservoir. Korean Journal of Environmental Agriculture 18: 77-82. (in Korean)
  9. Li, X.N., Song, H.L., Li, W., Lu, X.W. and Nishimura, O. 2010. An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecological Engineering 36: 382-390. https://doi.org/10.1016/j.ecoleng.2009.11.004
  10. Liu, S., Wang, Q., Sun, T., Wu, C. and Shi, Y. 2012. The effect of different types of microbubbles on the performance of the coagulation flotation process for coke wastewater. Journal of Chemical Technology and Biotechnology 87: 206-215. https://doi.org/10.1002/jctb.2698
  11. Tchobanoglous, G., Burton, F.L., Stensel, H.D. and Metcalf & Eddy Inc. 2003. Wastewater Engineering, Treatment and Reuse. McGraw-Hill, New York, USA.
  12. Park, S.G., Cho, I.G., Kwon, O.B., Moon, J. S., Um, H.Y. and Hwang, S.J. 2008. Algae and nutrient removal by vegetated artificial floating island. Korean Journal of Limnology 41: 93-98. (in Korean)
  13. Song, H.L., Li, X.N., Wang, X.J. and Lu, X.W. 2011. Enhancing nitrogen removal performance of vegetated floating-bed by adding Hyriopsiscumingii lea and an artificial medium. Fresenius Environmental Bulletin 20: 2435-2441.
  14. Takahashi, M., Chiba, K. and Li, P. 2007. Formation of hydroxyl radicals by collapsing ozone microbubbles under strongly acidic conditions. The Journal of Physical Chemistry B 111: 11443-11446. https://doi.org/10.1021/jp074727m
  15. Vogel, J.A. 2011. The Effects of Artificial Floating Wetland Island Construction Materials on Plant Biomass. Doctoral Dissertation, University of South Florida, St. Petersburg, USA.
  16. Winston, R.J., Hunt, W.F., Kennedy, S.G., Merriman, L.S., Chandler, J. and Brown, D. 2013. Evaluation of floating treatment wetlands as retrofits to existing stormwater retention ponds. Ecological Engineering 54: 254-265. https://doi.org/10.1016/j.ecoleng.2013.01.023
  17. Wu, Q. T., Gao, T., Zeng, S. and Chua, H. 2006. Plant-biofilm oxidation ditch for in situ treatment of polluted waters. Ecological Engineering 28: 124-130. https://doi.org/10.1016/j.ecoleng.2006.05.006
  18. Yang, Z., Zheng, S., Chen, J. and Sun, M. 2008. Purification of nitrate-rich agricultural runoff by a hydroponic system. Bioresource Technology 99: 8049-8053. https://doi.org/10.1016/j.biortech.2008.03.040

피인용 문헌

  1. Development of Natural Purification Technology Considering Material Cycle in River Reaches vol.3, pp.4, 2016, https://doi.org/10.17820/eri.2016.3.4.213
  2. Evaluation on Growth Inhibition Effect of Harmful Blue Green Algae Using TiO2-embedded Expanded Polystyrene (TiEPS) Balls: River/Reservoir Mesocosms vol.41, pp.11, 2016, https://doi.org/10.4491/ksee.2019.41.11.647
  3. Bio-polymer 소재를 활용한 다층다공성 하상보호공 적용에 따른 수질 및 부착조류의 변화량: 김해시 대청천을 중심으로 vol.6, pp.4, 2019, https://doi.org/10.17820/eri.2019.6.4.227