DOI QR코드

DOI QR Code

Reactive Oxygen Species are Involved in Y-27632-induced Neurite Outgrowth in PC12 Cells

  • Park, So Yeong (Department of Oral Biology, Yonsei University College of Dentistry) ;
  • Moon, Seong Ah (Department of Oral Biology, Yonsei University College of Dentistry) ;
  • An, Jeong Mi (Department of Oral Biology, Yonsei University College of Dentistry) ;
  • Kim, Du sik (Department of Oral Biology, Yonsei University College of Dentistry) ;
  • Seo, Jeong Taeg (Department of Oral Biology, Yonsei University College of Dentistry)
  • Received : 2016.11.21
  • Accepted : 2016.12.13
  • Published : 2016.12.31

Abstract

Inhibition of Rho-associated coiled coil-containing kinase (ROCK) has been reported to promote differentiation of neuronal cells. Here, we examined the effect of Y-27632, a ROCK inhibitor, on the outgrowth of neurites in PC12 cells. Y-27632 caused a rapid induction of neurite outgrowth in PC12 cells in a time-dependent manner. The neurite outgrowth, triggered by Y-27632, was accompanied by Rac1 activation, and was attenuated by Rac1 inhibitor NSC23766, in a concentration-dependent manner. Y-27632 also induced an increase in the production of reactive oxygen species (ROS). Pretreatment with N-acetylcysteine, an ROS scavenger, inhibited the ROS generation and neurite outgrowth in response to Y-27632. These results indicate that the activation of Rac1 and the generation of ROS contribute to the neurite outgrowth triggered by Y-27632 in PC12 cells.

Keywords

References

  1. Hirose M, Ishizaki T, Watanabe N, Uehata M, Kranenburg O, Moolenaar WH, et al. Molecular dissection of the Rho-associated protein kinase (p160ROCK)-regulated neurite remodeling in neuroblastoma N1E-115 cells. J Cell Biol. 1998;141(7):1625-1636. https://doi.org/10.1083/jcb.141.7.1625
  2. Kubo T, Yamaguchi A, Iwata N, Yamashita T. The therapeutic effects of Rho-ROCK inhibitors on CNS disorders. Ther Clin Risk Manag. 2008;4(3):605-615. https://doi.org/10.2147/TCRM.S2907
  3. Chen M, Liu A, Ouyang Y, Huang Y, Chao X, Pi R. Fasudil and its analogs: a new powerful weapon in the long war against central nervous system disorders? Expert Opin Investig Drugs. 2013;22(4):537-550. doi: 10.1517/13543784.2013.778242.
  4. Tonges L, Koch JC, Bahr M, Lingor P. ROCKing Regeneration: Rho Kinase Inhibition as Molecular Target for Neurorestoration. Front Mol Neurosci. 2011;4:39. doi: 10.3389/fnmol.2011.00039.
  5. Kouchi Z, Igarashi T, Shibayama N, Inanobe S, Sakurai K, Yamaguchi H, et al. Phospholipase Cdelta3 regulates RhoA/Rho kinase signaling and neurite outgrowth. J Biol Chem. 2011;286(10):8459-8471. doi: 10.1074/jbc.M110.171223.
  6. Chen S, Luo M, Zhao Y, Zhang Y, He M, Cai W, et al. Fasudil Stimulates Neurite Outgrowth and Promotes Differentiation in C17.2 Neural Stem Cells by Modulating Notch Signalling but not Autophagy. Cell Physiol biochem. 2015;36(2):531-541. https://doi.org/10.1159/000430118
  7. Kamishibahara Y, Kawaguchi H, Shimizu N. Rho kinase inhibitor Y-27632 promotes neuronal differentiation in mouse embryonic stem cells via phosphatidylinositol 3-kinase. Neurosci Lett. 2016;615:44-49. doi: 10.1016/j.neulet.2016.01.022.
  8. Pick E. Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase: outsourcing a key task. Small GTPases. 2014;5:e27952. doi: 10.4161/sgtp.27952.
  9. Borquez DA, Urrutia PJ, Wilson C, van Zundert B, Nunez MT, Gonzalez-Billault C. Dissecting the role of redox signaling in neuronal development. J Neurochem. 2016;137(4):506-517. doi: 10.1111/jnc.13581.
  10. Tovar-y-Romo LB, Penagos-Puig A, Ramirez-Jarquin JO. Endogenous recovery after brain damage: molecular mechanisms that balance neuronal life/death fate. J Neurochem. 2016;136(1):13-27. doi: 10.1111/jnc.13362.
  11. Forgione N, Fehlings MG. Rho-ROCK inhibition in the treatment of spinal cord injury. World Neurosurg. 2014;82(3-4):e535-539. doi: 10.1016/j.wneu.2013.01.009.
  12. Tan HB, Zhong YS, Cheng Y, Shen X. Rho/ROCK pathway and neural regeneration: a potential therapeutic target for central nervous system and optic nerve damage. Int J Ophthalmol. 2011;4(6):652-657. doi: 10.3980/j.issn.2222-3959.2011.06.16.
  13. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 1996;273(5272):245-248. https://doi.org/10.1126/science.273.5272.245
  14. Yasui H, Katoh H, Yamaguchi Y, Aoki J, Fujita H, Mori K, Negishi M. Differential responses to nerve growth factor and epidermal growth factor in neurite outgrowth of PC12 cells are determined by Rac1 activation systems. J Biol Chem. 2001;276(18):15298-15305. https://doi.org/10.1074/jbc.M008546200
  15. Shirazi Fard S, Kele J, Vilar M, Paratcha G, Ledda F. Tiam1 as a signaling mediator of nerve growth factor-dependent neurite outgrowth. PLoS One. 2010;5(3):e9647. doi: 10.1371/journal.pone.0009647.
  16. Rane CK, Minden A. P21 activated kinases: structure, regulation, and functions. Small GTPases. 2014;5. doi:10.4161/sgtp.28003.
  17. Szczepanowska J. Involvement of Rac/Cdc42/PAK pathway in cytoskeletal rearrangements. Acta Biochim Pol. 2009;56(2):225-234.
  18. Paravicini TM, Touyz RM. Redox signaling in hypertension. Cardiovasc Res. 2006;71(2):247-258. https://doi.org/10.1016/j.cardiores.2006.05.001
  19. Byon CH, Heath JM, Chen Y. Redox signaling in cardiovascular pathophysiology: A focus on hydrogen peroxide and vascular smooth muscle cells. Redox Biol. 2016;9:244-253. doi: 10.1016/j.redox.2016.08.015.
  20. Rahmati M, Mobasheri A, Mozafari M. Inflammatory mediators in osteoarthritis: A critical review of the state-of-the-art, current prospects, and future challenges. Bone. 2016;85:81-90. doi: 10.1016/j.bone.2016.01.019.
  21. Nayernia Z, Jaquet V, Krause KH. New insights on NOX enzymes in the central nervous system. Antioxid Redox Signal. 2014;20(17):2815-2837. doi: 10.1089/ars.2013.5703.
  22. Munnamalai V, Weaver CJ, Weisheit CE, Venkatraman P, Agim ZS, Quinn MT, et al. Bidirectional interactions between NOX2-type NADPH oxidase and the F-actin cytoskeleton in neuronal growth cones. J Neurochem. 2014;130(4):526-540. doi: 10.1111/jnc.12734.
  23. Wu H, Ichikawa S, Tani C, Zhu B, Tada M, Shimoishi Y, et al. Docosahexaenoic acid induces ERK1/2 activation and neuritogenesis via intracellular reactive oxygen species production in human neuroblastoma SH-SY5Y cells. Biochim Biophys Acta. 2009;1791(1):8-16. doi: 10.1016/j.bbalip.2008.10.004.