자유 공중 폭발하중 파라메타의 수정 산정식

A Modified Equation of Parameter of Free-air Blast Load

전	두	진*
Jeon	Do	o-Jin

이 민 재^{**} Lee, Min-Jae 한 상 을*** Han, Sang-Eul

Abstract

The blast load is classified into free-air blast and surface blast following the location of explosion and surface. In this paper, several equations for blast load calculation are explained briefly and a modified equation for free-air blast load is suggested. The modified equation is based on Kingery-Bulmash equation which is used in UFC 3-340-02 and Conwep model. In this modified equation, the process of calculation is simplified against the original equation, and the number of coefficients is reduced under 5. As a result, each parameter of estimated data by modified equation has less than 1% of error range comparing with Kingery-Bulmash equation.

Keywords : Free-air blast, Blast load, Kingery-Bulmash equation, Blast wave parameter

1. 서론

911 테러 및 폭탄테러, 가스폭발 사고 등에 의한 구조물과 인명 피해가 발생함에 따라 충격, 폭발 등 의 비정상하중에 대한 사회적 관심이 증가하고 있다. 이에 따라 국내외에서 이러한 비정상하중에 대한 연 구¹⁴⁾가 활발히 진행되고 있으며, 더욱이 최근 전 세 계적으로 발생한 테러와 그 위협으로 인해 방폭설계 의 필요성이 증대되었다.

구조물의 방폭설계 시 성능 검증은 실험을 통하는 것이 가장 확실한 방법이나, 비용 등의 현실적인 여 건상 충분한 실험을 시행하는 것은 어렵기 때문에 일 반적으로 수치해석 시뮬레이션을 통한 검토를 수행하 게 된다. 이 때 방폭설계 및 폭발해석에서 가장 기본 이 되는 것은 폭발하중을 산정하는 것이다. 따라서 과거에 폭발하중 산정식을 정립하기 위한 많은 연구

- * 정회원, 인하대학교 대학원, 박사과정 Inha University
- ** 정회원, 인하대학교 대학원, 석사과정 Inha University
- *** 교신저자, 인하대학교 건축공학과 교수, 공학박사 Department of Architecture, Inha University Tel: 032-860-7592 Fax: 032-750-5837 E-mail: hsang@inha.ac.kr

가 수행되었으며, 이론적으로 접근하기 어려운 하중 의 특성상 다양한 형태로 제시되었다.

폭발하중은 폭발 발생 위치와 지표면의 관계에 따 라 자유 공중 폭발과 표면 폭발로 분류할 수 있다. 자 유 공중 폭발은 <Fig. 1>과 같이 지표면에서 멀리 떨 어진 공중에서 폭발이 일어나는 것으로 폭발에 의한 압력파가 지표면의 간섭을 받지 않고 직접 구조물에 작용하는 것이며, 표면 폭발은 <Fig. 2>와 같이 지표 면에서 폭발이 발생하여 압력파가 지표면의 영향을 받는 것으로 일반적으로 자유 공중 폭발보다 큰 압력 이 발생한다.

본 논문에서는 2가지 폭발 중, 자유 공중 폭발하중 을 대상으로 하였으며, 기존에 제시된 다양한 폭발하 중 산정식을 간략하게 소개하고, 그 중 가장 보편적 으로 사용되는 식인 Kingery-Bulmash 방정식을 바탕 으로 기존의 식을 개선하여 자유 공중 폭발에 대한 수정된 산정식을 제시하고자 한다.

2. 기존의 폭발하중 산정식

2.1 폭발하중 시간이력곡선과 주요 파라메타

 \langle Fig. 3 \rangle Pressure-time curve of blast load⁵⁾

폭발 압력은 입사파에 의한 입사압력과 압력파가 구조물에서 반사되어 발생하는 반사압력의 합으로 결정된다. <Fig. 3>에서 보듯이 폭발 압력은 순간적 으로 큰 압력이 발생하였다가 빠르게 감소하는데, 이 때 폭발 압력이 대기압보다 큰 구간을 정압기, 대기압보다 작은 구간을 부압기라 한다. 그러나 부 압기의 경우 구조물에 미치는 영향이 매우 미미하 므로 일반적으로 폭발 해석에서는 정압기만을 고려 한다. 폭발 압력을 나타내는 주요 파라메타들로는, 압력의 도달 시간(T_a), 정압기의 지속 시간(T_o), 입 사압과 반사압의 최대값(P_s , P_r), 입사압과 반사압 에 의한 충격량(I_s , I_r), 그리고 압력 도달 시 압력파 의 속도(U) 등이 있다.

2.2 기존의 폭발하중 산정식

과거 폭발하중을 산정하기 위한 다양한 방정식이 제시되었다. Brode⁶⁾는 입사압의 최대값(*P_s*)을 식 (1)a, 식 (1)b와 같이 제시하였다.

 Z: 환산거리(Scaled distance)

 R: 폭발지점까지의 거리

 W: 폭약의 TNT 환산량

Kinney⁷는 이와 다르게 입사압의 최대값을 식 (3)과 같이 나타내었다.

$$P_{s} = P_{o} \frac{808[1 + (\frac{Z}{4.5})^{2}]}{\{[1 + (\frac{Z}{0.048})^{2}][1 + (\frac{Z}{0.32})^{2}][1 + (\frac{Z}{1.35})^{2}]\}^{-0.5}}$$

$$(bar) \qquad (3)$$

P_o: 대기압

또한, Mills⁸⁾는 입사압의 최대값을 식 (4)와 같이 제시하였다.

$$P_s = \frac{1772}{Z^3} - \frac{114}{Z^2} + \frac{108}{Z} (kPa) \tag{4}$$

그러나 이들과 다르게 Kingery와 Bulmash⁹는 입 사압의 최대값 외에도 다른 파라메타들을 함께 제 시하였으며, 그 식은 식 (5)a, 식 (5)b와 같다.

$$U = K_1 + K_2 \times \log Z$$
 (5)a
$$Y = 10^{(C_1 + C_2 \times U + C_3 \times U^2 + \dots + C_N \times U^{N-1})}$$
 (5)b

$$Y$$
: 폭발하중의 파라메타 $(P_s, P_r, \frac{I_s}{W^{1/3}}, \frac{I_r}{W^{1/3}}, \frac{T_o}{W^{1/3}}, U)$

여기서, K와 C는 Kingery-Bulmash 방정식에서 각각의 파라메타를 구하기 위한 계수이다<Fig. 4>.

6.2.1 Incident Pressure

These equations have a range of applicability from 0.05-400
U = -0.214362789151 + 1.35034249993T
Then substitute U into
Y = 2.611368669 - 1.69012801396U +
$0.00804973591951 {\rm U_2} + 0.336743114941 {\rm U_3} - \\$
$0.00516226351334U_4 - 0.0809228619858U_5 -$
$\boldsymbol{0.00478507266747U_6} + \boldsymbol{0.00793030472242U_7} + \boldsymbol{0.00793047} + \boldsymbol{0.0079307} + \boldsymbol{0.00793047} + \boldsymbol{0.0079307} + \boldsymbol{0.00797} + \boldsymbol{0.00797} + \boldsymbol{0.00797} + \boldsymbol{0.00797} + \boldsymbol{0.00797} + \boldsymbol{0.007977} + \boldsymbol{0.00797} + \boldsymbol{0.007977} + \boldsymbol{0.00797} + \boldsymbol{0.00797} + 0.$
$0.0007684469735U_8$
$\mathbf{U} = \mathbf{K}_0 + \mathbf{K}_1 \mathbf{T}$

{Fig. 4> Example of coefficients
for Kingery-Bulmash equation¹⁰⁾

<Fig. 5>는 각 방정식에 따른 입사압의 최대값을 비교한 결과이며, 방정식에 따라 다소 차이가 있음 을 알 수 있다.

(Fig. 5) Comparison of peak incident overpressure¹¹⁾

여러 폭발하중 산정식 중, Kingery-Bulmash의 방 정식은 많은 실험 데이터를 기반으로 Curve fitting 을 사용하여 세워졌으며, <Fig. 6>과 같이 폭발 압 력의 시간이력곡선을 나타내기 위한 파라메타들을 모두 계산할 수 있다. 또한, 미 국방성에서 발간된 매뉴얼인 UFC 3-340-02⁵⁾와 미 공병단에서 개발된 폭발하중 산정 프로그램인 Conwep에 적용되어, 가 장 보편적으로 사용되는 방정식이다.

그러나 Kingery-Bulmash 방정식은 각각의 파라 메타를 두 단계에 걸쳐 계산하며, 경우에 따라 계수 *C*는 최대 15개까지 필요하여 계산 과정이 다소 복 잡한 문제점을 가지고 있다. 따라서 본 논문에서는 기존의 Kingery-Bulmash 방정식을 바탕으로 하여, 계산과정을 줄이고 보다 간단하게 수정된 산정식을 제안하고자 한다.

3. 수정된 폭발하중 산정식

3.1 수정 산정식의 조건

본 연구에서는 Kingery-Bulmash 방정식을 기본 으로 단순화된 수정 산정식을 찾기 위하여 우선 기 본 함수형태를 설정하고 Curve fitting을 이용하여 각 파라메타에 맞는 계수를 찾도록 하였다. Curve fitting의 알고리즘은 비교적 안정적이고 빠르게 해 에 수렴할 수 있는 Levenberg-Marquardt 방법을 사용하였으며, 수정 산정식의 조건으로는 다음과 같 이 설정하였다.

- (1) 로그 스케일을 사용한 Kingery-Bulmash 방정 식을 기본으로 한다.
- (2) 거리, 질량, 시간, 압력의 단위계는 각각 m,
 kg, ms, MPa 단위를 사용한다.
- (3) 기존 방정식에서 제시하는 모든 범위(환산거 리 0.05~40m/kg^{1/3})를 만족하도록 한다.
- (4) 기본 함수의 형태는 지수함수로 하며, 지수는 환산거리의 로그값(log Z)을 변수로 하는 다 항식으로 한다.
- (5) 각 계산식의 계수의 수는 5개 이하로 하며, 5 개의 유효숫자를 갖도록 한다.
- (6) 전 구간에 대하여 기존 방정식과의 오차는1% 이내가 되도록 한다.

위와 같은 조건에 따라 수정 산정식의 기본 함수

형태는 식 (6)과 같이 결정하였다.

 $Y = 10^{(C_1 + C_2 \times (\log Z) + C_3 \times (\log Z)^2 + C_4 \times (\log Z)^3 + C_5 \times (\log z)^4)}$ (6)

3.2 수정 산정식의 계수

수정 산정식 조건에 따라 결정된 기본 함수로 Curve fitting을 사용하여 계수 *C*를 결정하였으며, 자유 공중 폭발하중의 입사압의 최대값(*P_s*)에 대한 계수값은 <Table 1>과 같다.

 $\langle \text{Table 1} \rangle$ Coefficients of P_s (*MPa*)

	0.05 < Z < 0.67								
C_1	-0.066628	C_2	-2.5691	C_3	-1.4213				
C_4	-0.50355	C_5	-0.094865						
0.67 < Z < 10.00									
C_1	-0.028310	C_2	-2.2324	C_3	-0.43379				
C_4	1.1615	C_5	-0.42023						
]	0.00	< Z < 40.00)					
C_1	-1.0569	C_2	-0.41582	C_3	-0.61361				
C_4	0.12882	C_5	_						

이와 마찬가지로 반사압의 최대값(*P_r*)에 대한 계 수값은 <Table 2>와 같다.

 $\langle \text{Table 2} \rangle$ Coefficients of P_r (*MPa*)

0.05 < Z < 1.05								
C_1	0.69758	C_2	-2.9928	C_3	-1.3840			
C_4	-0.25645	C_5	-					
	1.05 < Z < 10.00							
C_1	0.69699	C_2	-2.8246	C_3	-1.1613			
C_4	2.8654	C_5	-1.2088					
	10.00 < Z < 40.00							
C_1	-0.24954	C_2	-1.3806	C_3	_			
C_4	-	C_5	-					

입사압과 반사압에 의한 충격량은 각각을 폭약의

TNT 등가량의 세제곱근으로 나눈 값(*I_s*/*W*^{1/3}, *I_r*/*W*^{1/3})으로 계산되며, 이에 대한 계수값은 각각 <Table 3>, <Table 4>와 같다.

 $\langle \text{Table 3} \rangle$ Coefficients of $I_s/W^{1/3}$ ($MPa/kg^{1/3}$)

0.05 < Z < 0.79									
C_1	0.69758	C_2	-2.9928	C_3	-1.3840				
C_4	-0.25645	C_5	-						
	0.79 < Z < 3.99								
C_1	0.69699	C_2	-2.8246	C_3	-1.1613				
C_4	2.8654	C_5	-1.2088						
		3.99	< Z < 40.00						
C_1	-0.24954	C_2	-1.3806	C_3	_				
C_4	-	C_5	_						

 $\langle \text{Table 4} \rangle$ Coefficients of $I_r/W^{1/3}$ ($MPa/kg^{1/3}$)

0.05 < Z < 40.00							
C_1	-0.25256	C_2	-1.3067	C_3	0.22166		
C_4	-0.063474	C_5	-				

이와 마찬가지로, 압력의 도달 시간과 지속시간도 각각을 폭약의 TNT 등가량의 세제곱근으로 나눈 값($T_a/W^{1/3}$, $T_o/W^{1/3}$)으로 계산되며, 이에 대한 계수값은 각각 <Table 5>, <Table 6>과 같다.

(Table 5) Coefficients of $T_a/W^{1/3}$ ($ms/kg^{1/3}$)

0.05 < Z < 0.71									
C_1	-0.24704	C_2	2.1318	C_3	0.99500				
C_4	0.61033	C_5	0.18836						
0.71 < Z < 10.00									
C_1	-0.27471	C_2	1.8687	C_3	0.19437				
C_4	-0.67341	C_5	0.24074						
	1	0.00	< Z < 40.00)					
C_1	0.069208	C_2	1.3812	C_3	-0.093519				
C_4	_	C_5	_						

(Table 6) Coefficients of	$T_o/W^{1/3}$	$(ms/kg^{1/3})$
---------------------------	---------------	-----------------

0.14 < Z < 0.75								
C_1	0.66547	C_2	6.0191	C_3	8.2785			
C_4	3.5900	C_5	-					
0.75 < Z < 1.15								
C_1	0.25418	C_2	0.24840	C_3	-5.3442			
C_4	55.310	C_5	-					
		1.15	< Z < 2.93					
C_1	0.23966	C_2	0.84271	C_3	-11.795			
C_4	45.212	C_5	-47.224					
2.93 < Z < 40.00								
C_1	0.084367	C_2	1.0610	C_3	-0.92091			
C_4	0.50765	C_5	-0.10921					

또한, 압력이 도달할 때의 압력파의 속도(U)에 대한 계수값은 <Table 7>과 같다.

 $\langle \text{Table 7} \rangle$ Coefficients of U(m/ms)

0.05 < Z < 1.16								
C_1	0.0052658	C_2	-1.0266	C_3	-0.23754			
C_4	0.14415	C_5	0.073166					
1.16 < Z < 10.00								
C_1	0.011060	C_2	-1.0765	C_3	0.50854			
C_4	0.48259	C_5	-0.37621					
10.00 < Z < 40.00								
C_1	-0.42546	C_2	-0.025850	C_3	_			
C_4	-	C_5	-					

3.3 기존 방정식과 수정 산정식의 비교

본 논문에서 제안한 수정된 산정식의 정확성을 검증하기 위하여 기존 방정식인 Kingery-Bulmash 방정식과 비교하여 오차를 파악하였다. 전 구간에서 충분한 비교 데이터를 확보하기 위해 환산거리 0.05~40m/kg^{1/3} 구간의 총 500개의 지점에서 비교 하였으며, 그 결과는 <Table 8>과 같다.

Z	P_s	P_r	$I_{\!s}/W^{1/3}$	$I_{\!r}/W^{1/3}$	$T_{a}/W^{1/3}$	$T_{o}/W^{1/3}$	U
0.05	1.00	-0.62	-0.02	0.01	-0.97	-	0.74
0.0507	0.85	-0.38	-0.02	0.01	-0.82	-	0.62
0.0514	0.7	-0.18	-0.02	0.01	-0.67	-	0.51
÷	:	:	:	:	:	:	:
38.9426	-0.54	-0.46	0.35	-0.01	0.39	-0.18	-0.48
39.4678	-0.70	-0.56	0.42	-0.01	0.46	-0.25	-0.50
40	-0.89	-0.65	0.51	-0.01	0.06	-0.32	-0.53
Max	1.00	0.76	0.78	0.01	0.72	0.88	0.74
Min	-0.89	-0.95	-0.56	-0.01	-0.97	-0.99	-0.85
Average	0.29	0.20	0.08	0.01	0.15	0.23	0.18

(Table 8) Comparison modified equation with Kingery-Bulmash equation (Error: %)

<Fig. 6>에서 볼 수 있듯이 파라메타의 값은 환산 거리의 범위에 따라 차이가 매우 크기 때문에,
Table 8>에서는 환산거리와 결과값을 골고루 비교 하기 위하여 환산거리의 로그값을 500개로 등분하 였다. 전 범위의 환산거리에서 기존식과 비교한 결과, 모든 파라메타의 오차는 ±1% 이하임을 확인하 였다.

4. 결론

본 논문에서는 자유 공중 폭발의 다양한 산정식 에 대해 알아보았으며, 각 방정식에 따라 결과의 차 이가 있음을 확인하였다. 또한, 여러 폭발하중 산정 식 중 가장 보편적으로 사용되는 Kingery-Bulmash 방정식의 문제점을 인식하고, 이를 개선하고자 기존 의 식을 바탕으로 하는 수정 산정식을 제안하였다. 본 논문에서 제안하는 수정 산정식은 Curve fitting을 활용하여 기존 Kingery-Bulmash 방정식의 계산과정을 단축시켰으며, 각 파라메타의 계산에 사 용되는 계수의 수를 5개 이하로 감소시켰다. 이어 서, 수정 산정식의 정확성을 검증하기 위하여 모든 환산거리 범위에 대해 기존식과 결과를 비교하였다. 총 500개의 지점에서 결과값을 비교하였으며, 기존 식과 수정 산정식은 1% 이하의 오차율을 가짐을 확 인하였다. 본 논문에서 제안하는 수정 산정식은 기존의 방 정식으로부터 기본 함수 형태를 변경하여 세워진 방정식으로, 기존의 산정식과 마찬가지로 이론적인 내용이 포함되지 않은 한계점이 있다. 그러나 가장 보편적으로 사용되는 Kingery-Bulmash 방정식과 비교하여, 더욱 간단한 계산절차와 계산식으로부터 동일한 결과를 얻을 수 있다는 점에서 기존식을 보 완하고 대체할 수 있을 것이라 판단된다.

감사의 글

본 연구는 국토교통부 도시건축연구사업의 연구 비지원(16AUDP-B100343-02)에 의해 수행되었습니 다.

References

- H. Kim, H. Ahn, J. Ahn, "Erosion Criteria for the Blast Analysis of Reinforcement Concrete Members", Journal of the Architectural Institute of Korea, Structure and Construction Section, 30(3), pp21-28, 2014
- 2. K. Lee, Z. Huque, D. Jeon, S. Han, "The Development of Impact Force Model of

Large Commercial Aircraft Considering the Fuel Mass Effect", Journal of the Architectural Institute of Korea, Structure and Construction Section, 30(8), pp19-28, 2014

- M. Carriere, P.J. Hefferman, R.C. Wight, A. Braimah, "Behaviour of Steel Reinforced Polymer (SRP) Strengthened RC Members under Blast Load", Canadian Journal of Civil Engineering, 36, pp.1356-1365., 2009
- U. Nystrom, K. Gylltoft, "Numerical Studies of the Combined Effects of Blast and Fragment Loading", International Journal of Impact Engineering, 36, pp.995-1005, 2009
- Unified Facilities Criteria, "Structures to Resist the Effects of Accidental Explosions", UFC 3-340-02, U.S. Department of Defense, Washington D.C., 2014
- H.L. Brode, "Numericla Solution of Spherical Blast Waves", Journal of Applied Physics, American Institute of Physics, New York, 1955
- 7. G.F. Kinney, K.J. Graham, "Explosive Shocks in Air", Springer, Berlin, 1985
- C.A. Mills, "The Design of Concrete Structures to Resist Explosions and Weapon Effects", Proceedings of the 1st Int. Conference on Concrete for Hazard Protections, Edinburgh, UK, 1987
- C.N. Kingery, G. Bulmash, "Technical Report ARBRL-TR-02555: Air Blast Parameters from TNT Spherical Air Burst and Hemispherical Burst", AD-B082 713, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, 1984
- United Nations Office of Disarmament Affairs (UNODA), "International Ammunition Technical Guideline: Formulae for Ammunition management", UN IATG 01.80:2015 [E], UN Safer Guard, 2015

- V. Karlos, G. Solomos, "Calculation of Blast Loads for Application to Structural Components", EUR 26456 EN, European Commision, Italy, 2013
 - Received : November 14, 2016
 - Revised : December 12, 2016
 - Accepted : December 12, 2016