DOI QR코드

DOI QR Code

Development and Characterization of Asymmetric Swelling-Induced Wrinkles on Natural Rubber Surface

  • Lee, Gi-Bbeum (BK21 Plus Haptic Polymer Composite Research Team, Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Sathi, Shibulal Gopi (BK21 Plus Haptic Polymer Composite Research Team, Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Kim, Min Jung (BK21 Plus Haptic Polymer Composite Research Team, Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Park, Changsin (BK21 Plus Haptic Polymer Composite Research Team, Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Huh, Yang Il (School of Polymer Science and Engineering, Chonnam National University) ;
  • Nah, Changwoon (BK21 Plus Haptic Polymer Composite Research Team, Department of Polymer-Nano Science and Technology, Chonbuk National University)
  • Received : 2016.12.08
  • Accepted : 2016.12.20
  • Published : 2016.12.31

Abstract

Characteristics of the swelling-induced wrinkles on the surfaces of natural rubber (NR) film were investigated. The wrinkle structure was generated by swelling of NR film pre-stretched and firmly bonded onto an aluminum substrate in hexane. A novel experimental method was adopted to replicate the swelling-induced wrinkles on the NR film using an epoxy-hardener system. To get insight into the wrinkle parameters; the wrinkle length (L), wrinkle distance (D), wrinkle height (H) and the angle between two consecutive wrinkles (${\theta}$), the cross-sections of the replicas obtained from saturated swollen NR film were examined using an optical microscopy (OM). From the OM images, the wrinkling parameters were measured as a function of the thickness of NR film from 0.42 to 1.76 mm. Also, it was evaluated that the effects of swelling time on the wrinkling parameters. The length (L), distance (D) and height (H) of wrinkles increased as the thickness of the NR film and the swelling time increased. However, the angle between the wrinkles (${\theta}$) showed a sharp decrease up to a swelling time of 200 minutes and slightly decreased afterwards.

Keywords

References

  1. Y. Li, J. J. Peterson, S. B. Jhaveri, and K. R. Carter, "Patterned Polymer Films via Reactive Silane Infusion-Induced Wrinkling", Langmuir, 29, 4632 (2013). https://doi.org/10.1021/la400155d
  2. J. Li, Y. An, R. Huang, H. Jiang, and T. Xie, "Unique Aspects of a Shape Memory Polymer As the Substrate for Surface Wrinkling", ACS Appl. Mater. Interf., 4, 598 (2012). https://doi.org/10.1021/am201727a
  3. T. Okayasu, H.-L. Zhang, D. G. Bucknall, and G. A. D. Briggs, "Spontaneous Formation of Ordered Lateral Patterns in Polymer Thin-Film Structures", Adv. Funct. Mater., 14, 1081 (2004). https://doi.org/10.1002/adfm.200305014
  4. J. Rodriguez-Hernandez. "Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces", Prog. Polym. Sci., 42, 1 (2015). https://doi.org/10.1016/j.progpolymsci.2014.07.008
  5. Z. Y. Huang, W. Hong, and Z. Suo, "Nonlinear analyses of wrinkles in a film bonded to a compliant substrate", J. Mech. Phys. Solids, 53, 2101 (2005). https://doi.org/10.1016/j.jmps.2005.03.007
  6. S. Yang, K. Khare, and P.-C. Lin, "Harnessing Surface Wrinkle Patterns in Soft Matter", Adv. Funct. Mater., 20, 2550 (2010). https://doi.org/10.1002/adfm.201000034
  7. Y. Mei, S. Kiravittaya, S. Harazim, and O. G. Schmidt, "Principles and applications of micro and nanoscale wrinkles", Mater. Sci. Eng. R-Rep., 70, 209 (2010). https://doi.org/10.1016/j.mser.2010.06.009
  8. C. Tian, H.-P. Ji, C.-Y. Zong, and C.-H. Lu, "Controlled fabrication of hierarchically microstructured surfaces via surface wrinkling combined with template replication", Chin. Chem. Lett., 26, 15 (2015). https://doi.org/10.1016/j.cclet.2014.10.003
  9. J. Zang, X. Zhao, Y. Cao, and J. W. Hutchinson, "Localized ridge wrinkling of stiff films on compliant substrates", J. Mech. Phys. Solids, 60, 1265 (2012). https://doi.org/10.1016/j.jmps.2012.03.009
  10. P.-L. Ko, F.-L. Chang, C.-H. Li, J.-Z. Chen, I.-C. Cheng, Y.-C. Tung, S.-H. Chang, and P.-C. Lin, "Dynamically programmable surface micro-wrinkles on PDMS-SMA composite", Smart Mater. Struct., 23, 115007 (2014). https://doi.org/10.1088/0964-1726/23/11/115007
  11. M. Li, N. Hakimi, R. Perez, S. Waldman, J. A. Kozinski, and D. K. Hwang, "You have full text access to this content Microarchitecture for a Three-Dimensional Wrinkled Surface Platform", Adv. Mater., 27, 1880 (2015). https://doi.org/10.1002/adma.201405851
  12. S. A. Pendergraph, M. D. Bartlett, K. R. Carter, and A. J. Crosby, "Facile colloidal lithography on rough and non-planar surfaces for asymmetric patterning", ACS Appl. Mater. Interf., 6, 6845 (2014). https://doi.org/10.1021/am5006546
  13. Z. Chen, Y. Y. Kim, and S. Krishnaswamy, "Anisotropic wrinkle formation on shape memory polymer substrates", J. Appl. Phys., 112, 124319 (2012). https://doi.org/10.1063/1.4770483
  14. D. H. Gracias, "Stimuli responsive self-folding using thin polymer films", Curr. Opin. Chem. Eng., 2, 112 (2013). https://doi.org/10.1016/j.coche.2012.10.003
  15. E. P. Chan, J. M. Karp, and R. S. Langer, "A self-pinnin adhesive based on responsive surface wrinkles", J. Polym. Sci. Polym. Phys., 49, 40 (2011). https://doi.org/10.1002/polb.22165
  16. E. P. Chan, E. J. Smith, R. C. Hayward, and A. J. Crosby, "Surface Wrinkles for Smart Adhesion", Adv. Mater., 20, 711 (2008). https://doi.org/10.1002/adma.200701530
  17. Y. Rahmawan, C.-M. Chena, and S. Yang, "Recent advances in wrinkle-based dry adhesion", Soft Matter, 10, 5028 (2014). https://doi.org/10.1039/c4sm00027g
  18. J. Y. Chung, A. J. Nolte, and C. M. Stafford, "Surface wrinkling: a versatile platform for measuring thin-film properties", Adv. Mater., 23, 349 (2011). https://doi.org/10.1002/adma.201001759
  19. T. Sekitani, Y. Kato, S. Iba, H. Shinaoka, T. Someya, T. Sakurai, and S. Takagi, "Bending experiment on pentacene field-effect transistors on plastic films", Appl. Phys. Lett., 86, 073511 (2005). https://doi.org/10.1063/1.1868868
  20. T. Sekitani, S. Iba, Y. Kato, Y. Noguchi, T. Sakurai, and T. Someya, "Submillimeter radius bendable organic field-effect transistors", J. Non-Cryst. Solids, 352, 1769 (2006). https://doi.org/10.1016/j.jnoncrysol.2005.11.122
  21. S.-H. Lee and G.-H. Jeong, "Effect of catalytic metals on diameter-controlled growth of single-walled carbon nanotubes: Comparison between Fe and Au", Electron. Mater. Lett., 8, 5 (2012). https://doi.org/10.1007/s13391-011-0930-0
  22. R. Huang, and Z. Suo, "Wrinkling of a compressed elastic film on a viscous layer", J. Appl. Phys., 91, 1135 (2002). https://doi.org/10.1063/1.1427407
  23. E. Cerda, and L. Mahadevan, "Geometry and Physics of Wrinkling", Phys. Rev. Lett., 90, 074302 (2003). https://doi.org/10.1103/PhysRevLett.90.074302
  24. S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, "Design and Performance of Thin Metal Film Interconnects for Skin-Like Electronic Circuits", IEEE Electr. Device Lett., 25, 179 (2004). https://doi.org/10.1109/LED.2004.825190
  25. T. Ohzono, and M. Shimomura, "Ordering of microwrinkle patterns by compressive strain", Phys. Rev. B, 69, 132202 (2004). https://doi.org/10.1103/PhysRevB.69.132202
  26. C.-M. Chen, and S. Yang, "Wrinkling instabilities in polymer films and their applications", Polym. Int., 61, 1041 (2012). https://doi.org/10.1002/pi.4223
  27. E. P. Chan, and A. J. Crosby, "Spontaneous formation of stable aligned wrinkling patterns", Soft Matter, 2, 324 (2006). https://doi.org/10.1039/b515628a
  28. Y. C. Chen and A. J. Crosby, "High aspect ratio wrinkles via substrate prestretch", Adv. Mater., 26, 5626 (2014). https://doi.org/10.1002/adma.201401444
  29. N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, "Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer", Nature, 393, 146 (1998). https://doi.org/10.1038/30193
  30. N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, "The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer", Appl. Phys. Lett., 75, 2557 (1999). https://doi.org/10.1063/1.125076
  31. W. T. S. Huck, N. Bowden, P. Onck, T. Pardoen, J. W. Hutchinson, and G. M. Whitesides, "Ordering of Spontaneously Formed Buckles on Planar Surfaces", Langmuir, 16, 3497 (2000). https://doi.org/10.1021/la991302l
  32. A. L. Volynskii, S. Bazhenov, O. V. Lebedeva, and N. F. Bakeev, "Mechanical buckling instability of thin coatings deposited on soft polymer substrates", J. Mater. Sci., 35, 547 (2000). https://doi.org/10.1023/A:1004707906821
  33. M. Watanabe, "Striped-pattern formation of a thin gold film deposited onto a stretched elastic silicone substrate", J. Polym. Sci. Polym. Phys., 43, 1532 (2005). https://doi.org/10.1002/polb.20464
  34. T. Tanaka, S. T. Sun, Y. Hirokawa, S. Katayama, J. KuceraJ, Y. Hirose, and T. Amiya, "Mechanical instability of gels at the phase transition", Nature, 325, 796 (1987). https://doi.org/10.1038/325796a0
  35. E. S. Matsuo and T. Tanaka, "Patterns in shrinking gels", Nature, 358, 482 (1992). https://doi.org/10.1038/358482a0
  36. J. Hou, Q. Li, X. Han, and C. Lu, "Swelling/Deswelling-Induced Reversible Surface Wrinkling on Layer-by-Layer Multilayers", J. Phys. Chem. B, 118, 14502 (2014). https://doi.org/10.1021/jp508724n
  37. Z. Wu, N. Bouklas, and R. Huang, "Swell-induced surface instability of hydrogel layers with material properties varying in thickness direction", Int. J. Solids Struct., 50, 578 (2013). https://doi.org/10.1016/j.ijsolstr.2012.10.022
  38. H. S. Kim and A. J. Crosby, "Solvent-Responsive Surface via Wrinkling Instability", Adv. Mater., 23, 4188 (2011). https://doi.org/10.1002/adma.201101477
  39. M. Guvendiren, J. A. Burdick, and S. Yang, "Solvent induced transition from wrinkles to creases in thin film gels with depth-wise crosslinking gradients", Soft Matter, 6, 5795 (2010). https://doi.org/10.1039/c0sm00317d
  40. M. Guvendiren, S. Yang, and J. A. Burdick, "Swelling-Induced Surface Patterns in Hydrogels with Gradient Crosslinking Density", Adv. Funct. Mater., 19, 3038 (2009). https://doi.org/10.1002/adfm.200900622
  41. S. S. Velankar and V. Lai, "Swelling-Induced Delamination Causes Folding of Surface-Tethered Polymer Gels", ACS Appl. Mater. Interf., 4, 24 (2012). https://doi.org/10.1021/am201428m