DOI QR코드

DOI QR Code

에너지용 이온 교환 복합막 최근 연구 개발 동향

Recent Developments in Ion-Exchange Nanocomposite Membranes for Energy Applications

  • 황두성 (시카고 일리노이 주립대학교 화학공학과) ;
  • 티파니 청 (시카고 일리노이 주립대학교 화학공학과) ;
  • 통슈아이 왕 (시카고 일리노이 주립대학교 화학공학과) ;
  • 김상일 (시카고 일리노이 주립대학교 화학공학과)
  • Hwang, Doo Sung (Department of Chemical Engineering, University of Illinois at Chicago) ;
  • Chung, Tiffany (Department of Chemical Engineering, University of Illinois at Chicago) ;
  • Wang, Tongshuai (Department of Chemical Engineering, University of Illinois at Chicago) ;
  • Kim, Sangil (Department of Chemical Engineering, University of Illinois at Chicago)
  • 투고 : 2016.12.21
  • 심사 : 2016.12.27
  • 발행 : 2016.12.31

초록

최근 이온 교환 고분자 전해질 막을 활용한 고효율 에너지 전환 및 저장 장치에 대한 연구가 활발히 이루어지고 있다. 고분자 전해질 연료전지, 레독스 흐름전지 및 역전기투석 등 다양한 에너지 시스템에서 에너지 효율 향상을 위해 이온교환 전해질 막의 양/음이온의 선택적 수송 거동이 중요시되고 있다. 본 총설은 각각의 고효율 전해질 전지 시스템에 따라 요구되는 다양한 이온 교환막의 선택적 양/음이온 투과 거동의 한계점을 고찰하고, 한계를 극복하기 위한 다양한 구조의 고분자 이온 교환 복합막의 장점 및 단점을 정리하였다. 고분자 가교법 및 다공성 지지체 복합막 이외에 다양한 구조의 신규다공성 무기 나노입자를 유-무기 이온교환 복합막에 도입하는 시도가 이루어지고 있는 동시에, 이온 선택도 향상을 위한 다양한 형태의 표면 개질 방법이 개발되고 있으며, 이를 통해 이온 교환 복합막의 선택적 양/음이온 거동의 한계를 극복하는 전략을 제시하고 있다.

In the last decade, various types of energy harvesting and conversion systems based on ion exchange membranes (IEMs) have been developed for eco-friendly power generation and energy-grid systems. In these membrane-based energy systems, high ion selectivity and conductivity properties of IEMs are critical parameters to improve efficiency of the systems such as proton exchange membrane fuel cells, anion exchange membrane fuel cells, redox flow batteries, water electrodialysis for hydrogen production, and reverse electrodialysis. This article suggests variable approaches to overcome trade-off limitation of polymeric membrane ion transport properties by reviewing various types of composite ion-exchange membranes including novel inorganic-organic nanocomposite membrane, surface modified membranes, cross-linked and pore-filled membranes.

키워드

참고문헌

  1. E. D. Williams, "ARPA-E: First seven years, A sampling of project outcomes", the Advanced Research Project Agency for Energy (ARPA-E), the United States (2016).
  2. D. Papageorgopoulos, "2016 Annual Merit Review Proceedings Hydrogen and Fuel Cells Program Plenary", The Department of Energy (DOE), The United State (2016).
  3. C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium- temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Prog. Polym. Sci., 36, 1443 (2011). https://doi.org/10.1016/j.progpolymsci.2011.06.001
  4. R. M. Darling, K. G. Gallagher, J. A. Kowalski, S. Ha, and F. R. Brushett, "Pathways to low- cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries", Energy Environ. Sci., 7, 3459 (2014). https://doi.org/10.1039/C4EE02158D
  5. M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, and M. Saleem, "Progress in flow battery research and development. journal of the electrochemical society", J. Electochem. Soc., 158, R55 (2011). https://doi.org/10.1149/1.3599565
  6. B. E. Logan and M. Elimelech, "Membrane-based processes for sustainable power generation using water", Nature, 488, 313 (2012). https://doi.org/10.1038/nature11477
  7. R. Darling, K. Gallagher, W. Xie, L. Su, and F. Brushett, "Transport property requirements for flow battery separators", J. Electrochem. Soc., 163, A5029 (2016). https://doi.org/10.1149/2.0051601jes
  8. K. A. Mauritz and R. B. Moore, "State of understanding of nafion", Chem. Rev., 104, 4535 (2004). https://doi.org/10.1021/cr0207123
  9. G. M. Geise, M. A. Hickner, and B. E. Logan, "Ionic resistance and permselectivity tradeoffs in anion exchange membranes", ACS Appl. Mater. Interfaces, 5, 10294 (2013). https://doi.org/10.1021/am403207w
  10. P. Dllugolecki, K. Nymeijer, S. Metz, and M. Wessling, "Current status of ion exchange membranes for power generation from salinity gradients", J. Membr. Sci., 319, 214 (2008). https://doi.org/10.1016/j.memsci.2008.03.037
  11. Z. Qi, and A. Kaufman, "Open circuit voltage and methanol crossover in DMFCs", J. Power Sources, 110, 177 (2002). https://doi.org/10.1016/S0378-7753(02)00268-9
  12. A. Daniilidis, D. A. Vermaas, R. Herber, and K. Nijmeijer, "Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis", Renew. Energy, 64, 123 (2014). https://doi.org/10.1016/j.renene.2013.11.001
  13. S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, "Review of the proton exchange membranes for fuel cell applications", Int. J. Hydrogen Energy, 35, 9349 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.017
  14. E. Bakangura, L. Wu, L. Ge, Z. Yang, and T. Xu, "Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives", Prog. Polym. Sci., 57, 103 (2016). https://doi.org/10.1016/j.progpolymsci.2015.11.004
  15. C. Laberty-Robert, K. Valle, F. Pereira, and C. Sanchez, "Design and properties of functional hybrid organic-inorganic membranes for fuel cells", Chem. Soc. Rev., 40, 961 (2011). https://doi.org/10.1039/c0cs00144a
  16. K.-D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, "Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology", Chem. Rev., 104, 4637 (2004). https://doi.org/10.1021/cr020715f
  17. R. Souzy and B. Ameduri, "Functional fluoropolymers for fuel cell membranes", Prog. Polym. Sci., 30, 644 (2005). https://doi.org/10.1016/j.progpolymsci.2005.03.004
  18. K. D. Kreuer, "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells", J. Membr. Sci., 185, 29 (2001). https://doi.org/10.1016/S0376-7388(00)00632-3
  19. B. Bae, K. Miyatake, and M. Watanabe, "Effect of the hydrophobic component on the properties of sulfonated poly(arylene ether sulfone)s", Macromolecules, 42, 1873 (2009). https://doi.org/10.1021/ma8026518
  20. Y. S. Kim, M. A. Hickner, L. Dong, B. S. Pivovar, and J. E. McGrath, "Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: composition and morphology effects on the methanol permeability", J. Membr. Sci., 243, 317 (2004). https://doi.org/10.1016/j.memsci.2004.06.035
  21. D. S. Phu, C. H. Lee, C. H. Park, S. Y. Lee, and Y. M. Lee, "Synthesis of crosslinked sulfonated poly(phenylene sulfide sulfone nitrile) for direct methanol fuel cell applications", Macromol. Rapid Commun., 30, 64 (2009). https://doi.org/10.1002/marc.200800496
  22. Z. Bai, J. A. Shumaker, M. D. Houtz, P. A. Mirau, and T. D. Dang, "Fluorinated poly(arylenethioethersulfone) copolymers containing pendant sulfonic acid groups for proton exchange membrane materials", Polymer, 50, 1463 (2009). https://doi.org/10.1016/j.polymer.2009.01.028
  23. K. H. Lee, S. Y. Lee, D. W. Shin, C. Wang, S.-H. Ahn, K.-J. Lee, M. D. Guiver, and Y. M. Lee, "Structural influence of hydrophobic diamine in sulfonated poly(sulfide sulfone imide) copolymers on medium temperature PEM fuel cell", Polymer, 55, 1317 (2014). https://doi.org/10.1016/j.polymer.2013.09.030
  24. Y. Yin, O. Yamada, Y. Suto, T. Mishima, K. Tanaka, H. Kita, and K.-i. Okamoto, "Synthesis and characterization of proton-conducting copolyimides bearing pendant sulfonic acid groups", J. Polym. Sci. Part A Polym. Chem., 43, 1545 (2005). https://doi.org/10.1002/pola.20634
  25. Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, "High temperature proton exchange membranes based on polybenzimidazoles for fuel cells", Prog. Polym. Sci., 34, 449 (2009). https://doi.org/10.1016/j.progpolymsci.2008.12.003
  26. N. Li and M. D. Guiver, "Ion transport by nanochannels in ion-containing aromatic copolymers", Macromolecules, 47, 2175 (2014). https://doi.org/10.1021/ma402254h
  27. T. J. Peckham and S. Holdcroft, "Structure-morphology- property relationships of non- perfluorinated proton-conducting membranes", Adv. Mater., 22, 4667 (2010). https://doi.org/10.1002/adma.201001164
  28. K.-D. Kreuer, A. Rabenau, and W. Weppner, "Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors", Angew. Chemie Int. Ed., 21, 208 (1982).
  29. K.-D. Kreuer and G. Portale, "A critical revision of the nano-morphology of proton conducting ionomers and polyelectrolytes for fuel cell applications", Adv. Funct. Mater., 23, 5390 (2013). https://doi.org/10.1002/adfm.201300376
  30. J. Veerman, R. M. de Jong, M. Saakes, S. J. Metz, and G. J. Harmsen, "Reverse electrodialysis: Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density", J. Membr. Sci., 343, 7 (2009). https://doi.org/10.1016/j.memsci.2009.05.047
  31. M. Tedesco, A. Cipollina, A. Tamburini, and G. Micale, "Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines", J. Membr. Sci., 522, 226 (2017). https://doi.org/10.1016/j.memsci.2016.09.015
  32. E. Fontananova, D. Messana, R. A. Tufa, I. Nicotera, V. Kosma, E. Curcio, W. van Baak, E. Drioli, and G. Di Profio, "Effect of solution concentration and composition on the electrochemical properties of ion exchange membranes for energy conversion", J. Power Sources, 340, 282 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.075
  33. E. Fontananova, W. Zhang, I. Nicotera, C. Simari, W. van Baak, G. Di Profio, E. Curcio, and E. Drioli, "Probing membrane and interface properties in concentrated electrolyte solutions", J. Membr. Sci., 459, 177 (2014). https://doi.org/10.1016/j.memsci.2014.01.057
  34. B. Schwenzer, J. Zhang, S. Kim, L. Li, J. Liu, and Z. Yang, "Membrane development for vanadium redox flow batteries", ChemSusChem, 4, 1388 (2011). https://doi.org/10.1002/cssc.201100068
  35. D. J. Kim and S. Y. Nam, "Research trend of polymeric ion-exchange membrane for vanadium redox flow battery", Membr. J., 22, 385 (2012).
  36. Q. Luo, H. Zhang, J. Chen, D. You, C. Sun, and Y. Zhang, "Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery", J. Membr. Sci., 325, 553 (2008). https://doi.org/10.1016/j.memsci.2008.08.025
  37. Z. Mai, H. Zhang, X. Li, C. Bi, and H. Dai, "Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application", J. Power Sources, 196, 482 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.028
  38. S. Kim, J. Yan, B. Schwenzer, J. Zhang, L. Li, J. Liu, Z. Yang, and M. A. Hickner, "Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries", Electrochem. Commun., 12, 1650 (2010). https://doi.org/10.1016/j.elecom.2010.09.018
  39. B. Kosmala and J. Schauer, "Ion-exchange membranes prepared by blending sulfonated poly(2,6- dimethyl-1,4-phenylene oxide) with polybenzimidazole", J. Appl. Polym. Sci., 85, 1118 (2002). https://doi.org/10.1002/app.10632
  40. C. Hasiotis, V. Deimede, and C. Kontoyannis, "New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole", Electrochim. Acta., 46, 2401 (2001). https://doi.org/10.1016/S0013-4686(01)00437-6
  41. Y. T. Hong, C. H. Lee, H. S. Park, K. A. Min, H. J. Kim, S. Y. Nam, and Y. M. Lee, "Improvement of electrochemical performances of sulfonated poly(arylene ether sulfone) via incorporation of sulfonated poly(arylene ether benzimidazole)", J. Power Sources, 175, 724 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.068
  42. T. Yamaguchi, F. Miyata, and S. Nakao, "Polymer electrolyte membranes with a pore- filling structure for a direct methanol fuel cell", Adv. Mater., 15, 1198 (2003). https://doi.org/10.1002/adma.200304926
  43. M.-S. Lee, T. Kim, S.-H. Park, C.-S. Kim, and Y.-W. Choi, "A highly durable cross-linked hydroxide ion conducting pore-filling membrane", J. Mater. Chem., 22, 13928 (2012). https://doi.org/10.1039/c2jm32628k
  44. J. Xi, Z. Wu, X. Teng, Y. Zhao, L. Chen, and X. Qiu, "Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries", J. Mater. Chem., 18, 1232 (2008). https://doi.org/10.1039/b718526j
  45. J. G. Austing, C. N. Kirchner, L. Komsiyska, and G. Wittstock, "Layer-by-layer modification of Nafion membranes for increased life-time and efficiency of vanadium/air redox flow batteries", J. Membr. Sci., 510, 259 (2016). https://doi.org/10.1016/j.memsci.2016.03.005
  46. J.-J. Woo, S.-J. Seo, S.-H. Yun, R.-Q. Fu, T.-H. Yang, and S.-H. Moon, "Enhanced stability and proton conductivity of sulfonated polystyrene/PVC composite membranes through proper copolymerization of styrene with a-methylstyrene and acrylonitrile", J. Membr. Sci., 363, 80 (2010). https://doi.org/10.1016/j.memsci.2010.07.009
  47. J. Kerres, A. Ullrich, F. Meier, and T. Haring, "Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells", Solid State Ion., 125, 243 (1999). https://doi.org/10.1016/S0167-2738(99)00181-2
  48. J. Kerres, W. Cui, and M. Junginger, "Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU crosslinked PSU blend membranes by alkylation of sulfinate groups with dihalogenoalkanes", J. Membr. Sci., 139, 227 (1998). https://doi.org/10.1016/S0376-7388(97)00254-8
  49. S. D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G. P. Robertson, and M. D. Guiver, "Proton conducting membranes based on crosslinked sulfonated poly(ether ether ketone) (SPEEK)", J. Membr. Sci., 233, 93 (2004). https://doi.org/10.1016/j.memsci.2004.01.004
  50. N. R. Kang, S. Y. Lee, D. W. Shin, D. S. Hwang, K. H. Lee, D. H. Cho, J. H. Kim, and Y. M. Lee, "Effect of end-group cross-linking on transport properties of sulfonated poly(phenylene sulfide nitrile)s for proton exchange membranes", J. Power Sources, 307, 834 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.051
  51. S. Y. Lee, N. R. Kang, D. W. Shin, C. H. Lee, K.-S. Lee, M. D. Guiver, N. Li, and Y. M. Lee, "Morphological transformation during cross-linking of a highly sulfonated poly(phenylene sulfide nitrile) random copolymer", Energy Environ. Sci., 5, 9795 (2012). https://doi.org/10.1039/c2ee21992a
  52. E. Guler, Y. Zhang, M. Saakes, and K. Nijmeijer, "Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis", ChemSusChem., 5, 2262 (2012). https://doi.org/10.1002/cssc.201200298
  53. W. H. Lee, K. H. Lee, D. W. Shin, D. S. Hwang, N. R. Kang, D. H. Cho, J. H. Kim, and Y. M. Lee, "Dually cross-linked polymer electrolyte membranes for direct methanol fuel cells", Power Sources, 282, 211 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.191
  54. B. Han, J. Pan, S. Yang, M. Zhou, J. Li, A. Sotto Díaz, B. Van der Bruggen, C. Gao, and J. Shen, "Novel composite anion exchange membranes based on quaternized polyepichlorohydrin for electromembrane application", Ind. Eng. Chem. Res., 55, 7171 (2016). https://doi.org/10.1021/acs.iecr.6b01736
  55. J. B. Ballengee and P. N. Pintauro, "Preparation of nanofiber composite proton-exchange membranes from dual fiber electrospun mats", J. Membr. Sci., 442, 187 (2013). https://doi.org/10.1016/j.memsci.2013.04.023
  56. J. B. Ballengee and P. N. Pintauro, "Composite fuel cell membranes from dual-nanofiber electrospun mats", Macromolecules, 44, 7307 (2011). https://doi.org/10.1021/ma201684j
  57. D.-H. Kim and M.-S. Kang, "Preparation and characterizations of ionomer-coated pore-filled ion-exchange membranes for reverse electrodialysis", Membr. J., 26, 43 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.43
  58. H. Jung, K. Fujii, T. Tamaki, H. Ohashi, T. Ito, and T. Yamaguchi, "Low fuel crossover anion exchange pore-filling membrane for solid-state alkaline fuel cells", J. Membr. Sci., 373, 107 (2011). https://doi.org/10.1016/j.memsci.2011.02.044
  59. B. P. Tripathi and V. K. Shahi, "Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications", Prog. Polym. Sci., 36, 945 (2011). https://doi.org/10.1016/j.progpolymsci.2010.12.005
  60. M. Watanabe, H. Uchida, and M. Emori, "Polymer electrolyte membranes incorporated with nanometer-size particles of Pt and/or metal-oxides: Experimental analysis of the self-humidification and suppression of gas-crossover in fuel cells", J. Phys. Chem. B, 102, 3129 (1998). https://doi.org/10.1021/jp973477e
  61. X. Zhu, H. Zhang, Y. Zhang, Y. Liang, X. Wang, and B. Yi, "An ultrathin self-humidifying membrane for PEM fuel cell application: Fabrication, characterization, and experimental analysis", J. Phys. Chem. B, 110, 14240 (2006). https://doi.org/10.1021/jp061955s
  62. C. Bi, H. Zhang, Y. Zhang, X. Zhu, Y. Ma, H. Dai, and S. Xiao, "Fabrication and investigation of $SiO_2$ supported sulfated zirconia/Nafion(R) self-humidifying membrane for proton exchange membrane fuel cell applications", J. Power Sources, 184, 197 (2008). https://doi.org/10.1016/j.jpowsour.2008.06.019
  63. Z. Chen, B. Holmberg, W. Li, X. Wang, W. Deng, R. Munoz, and Y. Yan, "Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell", Chem. Mater., 18, 5669 (2006). https://doi.org/10.1021/cm060841q
  64. S. Meenakshi, A. K. Sahu, S. D. Bhat, P. Sridhar, S. Pitchumani, and A. K. Shukla, "Mesostructured-aluminosilicate-Nafion hybrid membranes for direct methanol fuel cells", Electrochim. Acta., 89, 35 (2013). https://doi.org/10.1016/j.electacta.2012.11.003
  65. U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, and J. Pastre, "Metal- organic frameworks-prospective industrial applications", J. Mater. Chem., 16, 626 (2006). https://doi.org/10.1039/B511962F
  66. S. Mikhailenko, D. Desplantier-Giscard, C. Danumah, and S. Kaliaguine, "Solid electrolyte properties of sulfonic acid functionalized mesostructured porous silica", Microporous Mesoporous Mater., 52, 29 (2002). https://doi.org/10.1016/S1387-1811(02)00275-5
  67. Y.-H. Liu, B. Yi, Z.-G. Shao, L. Wang, D. Xing, and H. Zhang, "Pt/CNTs-Nafion reinforced and self-humidifying composite membrane for PEMFC applications", J. Power Sources, 163, 807 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.065
  68. J.-M. Thomassin, J. Kollar, G. Caldarella, A. Germain, R. Jerome, and C. Detrembleur, "Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications", J. Membr. Sci., 303, 252 (2007). https://doi.org/10.1016/j.memsci.2007.07.019
  69. L. Wang, D. M. Xing, H. M. Zhang, H. M. Yu, Y. H. Liu, and B. L. Yi, "MWCNTs reinforced Nafion$^{(R)}$ membrane prepared by a novel solution- cast method for PEMFC", J. Power Sources, 176, 270 (2008). https://doi.org/10.1016/j.jpowsour.2007.10.015
  70. Y.-C. Cao, C. Xu, X. Wu, X. Wang, L. Xing, and K. Scott, "A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells", J. Power Sources, 196, 8377 (2011). https://doi.org/10.1016/j.jpowsour.2011.06.074
  71. H.-C. Chien, L.-D. Tsai, C.-P. Huang, C.-y. Kang, J.-N. Lin, and F.-C. Chang, "Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells", Int. J. Hydrogen Energy, 38, 13792 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.036
  72. Y. Heo, H. Im, and J. Kim, "The effect of sulfonated graphene oxide on Sulfonated Poly (Ether Ether Ketone) membrane for direct methanol fuel cells", J. Membr. Sci., 425-426, 11 (2013). https://doi.org/10.1016/j.memsci.2012.09.019
  73. Z. Jiang, Y. Shi, Z.-J. Jiang, X. Tian, L. Luo, and W. Chen, "High performance of a freestanding sulfonic acid functionalized holey graphene oxide paper as a proton conducting polymer electrolyte for air-breathing direct methanol fuel cells", J. Mater. Chem. A, 2, 6494 (2014). https://doi.org/10.1039/c4ta00208c
  74. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar, "Surface modification of inorganic nanoparticles for development of organic- inorganic nanocomposites-A review", Prog. Polym. Sci., 38, 1232 (2013). https://doi.org/10.1016/j.progpolymsci.2013.02.003
  75. Y.-H. Su, Y.-L. Liu, Y.-M. Sun, J.-Y. Lai, D.-M. Wang, Y. Gao, B. Liu, and M. D. Guiver, "Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells", J. Membr. Sci., 296, 21 (2007). https://doi.org/10.1016/j.memsci.2007.03.007
  76. H. Hagihara, H. Uchida, and M. Watanabe, "Preparation of highly dispersed $SiO_2$ and Pt particles in Nafion$^(R)$112 for self-humidifying electrolyte membranes in fuel cells", Electrochim. Acta, 51, 3979 (2006). https://doi.org/10.1016/j.electacta.2005.11.012
  77. M.-N. Kim, Y.-W. Choi, T.-Y. Kim, M.-S. Lee, C.-S. Kim, T.-H. Yang, and K.-S. Nam, "Characterization of sulfonated ploy(aryl ether sulfone) membranes impregnated with sulfated $ZrO_2$", Membr. J., 21, 30 (2011).
  78. C. S. Karthikeyan, S. P. Nunes, L. A. S. A. Prado, M. L. Ponce, H. Silva, B. Ruffmann, and K. Schulte, "Polymer nanocomposite membranes for DMFC application", J. Membr. Sci., 254, 139 (2005). https://doi.org/10.1016/j.memsci.2004.12.048
  79. J. Kim, J.-D. Jeon, and S.-Y. Kwak, "Nafion-based composite membrane with a permselective layered silicate layer for vanadium redox flow battery", Electrochem. Comm., 38, 68 (2014). https://doi.org/10.1016/j.elecom.2013.11.002
  80. E. Vijayakumar and D. Sangeetha, "A quaternized mesoporous silica/polysulfone composite membrane for an efficient alkaline fuel cell application", RSC Adv., 5, 42828 (2015). https://doi.org/10.1039/C5RA04144A
  81. V. Elumalai and S. Dharmalingam, "Synthesis characterization and performance evaluation of ionic liquid immobilized SBA-15/quaternised polysulfone composite membrane for alkaline fuel cell", Microporous Mesoporous Mater., 236, 260 (2016). https://doi.org/10.1016/j.micromeso.2016.09.007
  82. N. Qian, Z. Duan, Y. Zhu, Q. Xiang, and J. Xu, "4,4'-Diaminodiphenyl sulfone functionalized SBA-15: Toluene sensing properties and improved proton conductivity", J. Physic. Chem. C, 118, 1879 (2014). https://doi.org/10.1021/jp406688c
  83. W.-F. Chen, J.-S. Wu, and P.-L. Kuo, "Poly(oxyalkylene) diamine-Functionalized Carbon Nanotube/ Perfluorosulfonated Polymer Composites: Synthesis, Water State, and Conductivity", Chem. Mater., 20, 5756 (2008). https://doi.org/10.1021/cm8001354
  84. Y. Wang, Z. Jiang, H. Li, and D. Yang, "Chitosan membranes filled by GPTMS-modified zeolite beta particles with low methanol permeability for DMFC", Chem. Eng. Process.: Process Intensification., 49, 278 (2010). https://doi.org/10.1016/j.cep.2010.02.004
  85. L. Zhiting, D. Xuezhi, Q. Gang, Z. Xinggui, and Y. Weikang, "Eco-friendly one-pot synthesis of highly dispersible functionalized graphene nanosheets with free amino groups", Nanotechnol., 24, 045609 (2013). https://doi.org/10.1088/0957-4484/24/4/045609
  86. C. W. Jones, K. Tsuji, and M. E. Davis, "Organic-functionalized molecular sieves as shape- selective catalysts", Nature, 393, 52 (1998). https://doi.org/10.1038/29959
  87. R. H. Tunuguntla, F. I. Allen, K. Kim, A. Belliveau, and A. Noy, "Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins", Nat. Nanotechnol., 11, 639 (2016). https://doi.org/10.1038/nnano.2016.43
  88. F. Fornasiero, J. B. In, S. Kim, H. G. Park, Y. Wang, C. P. Grigoropoulos, A. Noy, and O. Bakajin, "pH-Tunable ion selectivity in carbon nanotube pores", Langmuir, 26, 14848 (2010). https://doi.org/10.1021/la101943h
  89. S. H. Joo, C. Pak, E. A. Kim, Y. H. Lee, H. Chang, D. Seung, Y. S. Choi, J.-B. Park, and T. Kim, "Functionalized carbon nanotube-poly (arylene sulfone) composite membranes for direct methanol fuel cells with enhanced performance", J. Power Sources, 180, 63 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.014
  90. K. J. Lee and Y. H. Chu, "Preparation of the graphene oxide (GO)/Nafion composite membrane for the vanadium redox flow battery (VRB) system", Vacuum, 107, 269 (2014). https://doi.org/10.1016/j.vacuum.2014.02.023
  91. P. Dai, Z.-H. Mo, R.-W. Xu, S. Zhang, X. Lin, W.-F. Lin, and Y.-X. Wu, "Development of a cross-linked quaternized poly(styrene-b-isobutyleneb- styrene)/graphene oxide composite anion exchange membrane for direct alkaline methanol fuel cell application", RSC Adv., 6, 52122 (2016). https://doi.org/10.1039/C6RA08037E
  92. Z. Luo, Y. Gong, X. Liao, Y. Pan, and H. Zhang, "Nanocomposite membranes modified by graphene-based materials for anion exchange membrane fuel cells", RSC Adv., 6, 13618 (2016). https://doi.org/10.1039/C5RA21104B
  93. J. Li, X. Yan, Y. Zhang, B. Zhao, and G. He, "Enhanced hydroxide conductivity of imidazolium functionalized polysulfone anion exchange membrane by doping imidazolium surface-functionalized nanocomposites", RSC Adv., 6, 58380 (2016). https://doi.org/10.1039/C6RA07241K
  94. L. Liu, C. Tong, Y. He, Y. Zhao, and C. Lu, "Enhanced properties of quaternized graphenes reinforced polysulfone based composite anion exchange membranes for alkaline fuel cell", J. Membr. Sci., 487, 99 (2015). https://doi.org/10.1016/j.memsci.2015.03.077
  95. J. Pandey and B. R. Tankal, "Performance of the vanadium redox-flow battery (VRB) for Si-PWA/ PVA nanocomposite membrane", J. Solid State Electrochem., 20, 2259 (2016). https://doi.org/10.1007/s10008-016-3244-1
  96. W. Dai, Y. Shen, Z. Li, L. Yu, J. Xi, and X. Qiu, "SPEEK/Graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery", J. Mater. Chem. A, 2, 12423 (2014). https://doi.org/10.1039/C4TA02124J
  97. X. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu, and L. Chen, "Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery", J. Power Sources, 189, 1240 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.040
  98. S. Mulyati, R. Takagi, A. Fujii, Y. Ohmukai, and H. Matsuyama, "Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an electrodialysis process, using polyelectrolyte multilayer deposition", J. Membr. Sci., 431, 113 (2013). https://doi.org/10.1016/j.memsci.2012.12.022
  99. M.-K. Park, S. Deng, and R. C. Advincula, "pH-Sensitive bipolar ion-permselective ultrathin films", J. Am. Chem. Soc., 126, 13723 (2004). https://doi.org/10.1021/ja0484707
  100. C. H. Park, S. Y. Lee, D. S. Hwang, D. W. Shin, D. H. Cho, K. H. Lee, T.-W. Kim, T.-W. Kim, M. Lee, D.-S. Kim, C. M. Doherty, A. W. Thornton, A. J. Hill, M. D. Guiver, and Y. M. Lee, "Nanocrack-regulated self-humidifying membranes", Nature, 532, 480 (2016). https://doi.org/10.1038/nature17634
  101. S. Hu, M. Lozada-Hidalgo, F. C. Wang, A. Mishchenko, F. Schedin, R. R. Nair, E. W. Hill, D. W. Boukhvalov, M. I. Katsnelson, R. A. W. Dryfe, I. V. Grigorieva, H. A. Wu, and A. K. Geim, "Proton transport through one-atom-thick crystals", Nature, 516, 227 (2014). https://doi.org/10.1038/nature14015