DOI QR코드

DOI QR Code

Anti-inflammatory and Whitening Effects of Protaetia brevitarsis Seulensis Extracts by Oriental Conversion Methods

포제방법에 따른 흰점박이꽃무지(Protaetia brevitarsis Seulensis) 추출물의 항염 및 미백활성에 관한 연구

  • Sung, Gyeong Ah (Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology) ;
  • Kim, Mi Hye (Department of Funeral Service Manegement, Sorabol College) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology)
  • 성경아 (서울과학기술대학교 정밀화학과 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터) ;
  • 김미혜 (서라벌대학교 장례서비스경영과) ;
  • 박수남 (서울과학기술대학교 정밀화학과 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터)
  • Received : 2016.11.28
  • Accepted : 2016.12.12
  • Published : 2016.12.30

Abstract

In order to find new functional materials for the cosmetics application, we investigated anti-inflammatory and whitening effects of the Protaetia brevitarsis seulensis (P. brevitarsis) extracts, which were prepared by the various oriental conversion methods, as follows; fresh, roasted one time, roasted two times, roasted three times, and steamed. 2,2-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities of the various solvent extracts (80% ethanol, 50% ethanol, ethyl acetate, hexane) of P. brevitarsis extracts were 85.5, 22.4, 37.0 and 19.4% respectively. The 80% ethanol extract with the highest antioxidant activity was used for all experiments. In case of antioxidant activity test of the extracts, all the extracts showed the activities in concentration dependent manner regardless of the sample preparation methods. Superoxide dismutase-like (SOD-like) activities of the extracts roasted three times and steamed were 62.9 and 55.9%, respectively in $500{\mu}g/mL$. Effects of extracts on the inflammation of RAW 264.7 cell induced by lipopolysaccharide (LPS) showed decreasing tendency of $NO{\cdot}$ and prostaglandin $E_2$ ($PGE_2$) production; PBS fresh (38.0%), PBS roasted one time (41.0%), PBS roasted two times (69.8%), PBS roasted three times (70.1%), PBS steamed (78.5%). Intracellular tyrosinase and melanin biosynthesis inhibitory activities of the extracts were decreased in a concentration dependent manner. However, the fresh P. brevitarsis extracts without the oriental conversion method showed 90.7% decrease compared to the control group treated with ${\alpha}$-MSH alone at $500{\mu}g/mL$. Taken together, these results suggest the oriental conversion method can be applied in development of cosmetic materials in order to improve anti-inflammatory and whitening effects of the cosmetics products.

본 연구에서는 화장품 신소재 개발을 위해 한의약적 포제법을 적용하여 흰점박이꽃무지 추출물을 제조하고 포제방법에 따른 항염 및 미백활성을 평가하였다. 모든 실험은 생(生), 1회 초법(炒法), 2회 초법(炒法), 3회 초법(炒法), 증법(蒸法)을 적용한 흰점박이꽃무지를 이용하였다. 각 포제법을 적용한 흰점박이꽃무지의 용매별 (80% 에탄올, 50% 에탄올, 에틸아세테이트, 헥산) 추출물에 대한 1,1-diphenyl-2-picrylhydrazyl (DPPH) 라디칼 소거 활성은 각각 85.5, 22.4, 37.0 및 19.4%의 효과를 나타내었다. 따라서 이후의 실험은 항산화 활성이 가장 큰 80% 에탄올 추출물을 이용하였다. 포제법을 적용한 흰점박이꽃무지 추출물과 포제법을 적용하지 않은 추출물 모두 농도 의존적으로 항산화능을 나타냈으며, $500{\mu}g/mL$ 농도에서 포제법을 적용한 3회 초법 및 증법은 superoxide dismutase (SOD)-like 활성이 각각 62.9 및 55.9%를 나타냈다. Lipopolysaccharide (LPS)로 염증이 유도된 RAW 264.7 세포에 포제법을 적용한 흰점박이꽃무지 추출물을 처리하였을 때, LPS를 단독으로 처리한 양성 대조군보다 포제법을 적용하지 않은 흰점박이꽃무지 추출물(38.0%), 1회 초법(41.0%), 2회 초법(69.8%), 3회 초법(70.1%), 증법(78.5%) 순으로 염증 매개물질인 $NO{\cdot}$ 생성이 유의적으로 감소하였다. 세포 내 tyrosinase 저해 활성 및 멜라닌 생합성 저해 효과를 확인한 결과, 농도 의존적으로 tyrosinase 저해 활성 및 멜라닌 생성 억제 활성을 나타내었다. 포제하지 않은 흰점박이꽃무지 추출물은 $500{\mu}g/mL$ 농도에서 ${\alpha}$-MSH만 처리한 대조군과 비교하여 멜라닌 생합성을 90.7% 감소시켰다. 이상의 결과들은 항염이나 미백활성이 있는 화장품 소재 개발에 포제법을 적용할 수 있음을 시사한다.

Keywords

References

  1. H. Kawamata, H. Ochiai, N. Mantani, and K. Terasawa, Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS-activated RAW 264.7 cells, a murine macrophage celline, Am. J. Chin Med., 28(2), 217 (2000). https://doi.org/10.1142/S0192415X0000026X
  2. B. G. Lee, S. H. Kim, O. P. Zee, H. Y. Lee, J. W. Han, and H. W. Lee, Suppression of inducible nitric oxide synthase expression in RAW 264.7 macrophages by two b-carboline alkaloids extracted from Melia azedarach, Eur. J. Pharmacol., 406(3), 301 (2000). https://doi.org/10.1016/S0014-2999(00)00680-4
  3. C. F. Nathan and J. B. Hibbs, Role of nitric oxide synthesis in macrophage antimicrobial activity, Curr. Opinion. Immunol., 3(1), 65 (1991). https://doi.org/10.1016/0952-7915(91)90079-G
  4. B. H. Lee, D. S. Baik, S. U. Yun, J. M. Shin, J. H. Kim, S. Y. Yun, B. H. Kim, S. B. Kim, J. E. Shin, and I. H. Song, Peripheral nitric oxide activity in patients with liver cirrhosis, Korean J. Med., 73(3), 251 (2007).
  5. M. M. Mu, D. Chakravortty, T. Sugiyama, N. Koide, K. Takahashi, L. Mori, T. Yoshida, and T. Yokochi, The inhibitory action of quercetin on lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophage cells, J. Endotoxin. Res., 7(6), 431 (2001). https://doi.org/10.1179/096805101101533034
  6. K. Y. Stokes, D. Cooper, A. Tailor, and D. N. Granger, Hypercholesterolemia promotes inflammation and microvascular dysfunction: role of nitric oxide and superoxide, Free Radic. Biol. Med., 33(8), 1026 (2002). https://doi.org/10.1016/S0891-5849(02)01015-8
  7. J. H. Ryu, H. Ahn, J. Y. Kim, and Y. K. Kim, Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophages, Phytother. Res., 17(5), 485 (2003). https://doi.org/10.1002/ptr.1180
  8. J. O. Park, J. O. Park, and C. G. Joo, A study on whitening and anti-inflammatory effects of Eriobotrya japonica leaf extracts with different extraction methods, J. Soc. Cosmet. Sci. Korea, 41(2), 151 (2015). https://doi.org/10.15230/SCSK.2015.41.2.151
  9. X. Jin, X. H. Zhang, and N. C. Zhao, Effects of petroleum ether extract of Peucedanum praeruptorum Dunn on rabbit trachea smooth muscles, Zhongguo Zhong Yao Za Zhi, 19(6), 365 (1994).
  10. Y. C. Huang, J. H. Guh, Z. J. Cheng, Y. L. Chang, T. L. Hwang, C. H. Liao, C. C. Tzeng, and C. M. Teng, Inhibition of the expression of inducible nitric oxide synthase and cyclooxygenase-2 in macrophages by 7HQ derivatives : involvement of $I{\kappa}B{\alpha}$ stabilization, Eur. J. Pharmacol., 418(1-2), 133 (2001). https://doi.org/10.1016/S0014-2999(01)00922-0
  11. B. A. Gilchrest and M. S. Eller, DNA photodamage stimulates melanogenesis and other photoprotective responses, J. Investig. Dermatol. Symp. Proc., 4(1), 35 (1999). https://doi.org/10.1038/sj.jidsp.5640178
  12. V. J. Hearing and M. Jimenez, Analysis of mammalian pigmentation at the molecular level, Pigment Cell Res., 2(2), 75 (1989). https://doi.org/10.1111/j.1600-0749.1989.tb00166.x
  13. V. J. Hearing and K. Tsukamoto, Enzymatic control of pigmentation in mammals, FASEB J., 5(14), 2902 (1991). https://doi.org/10.1096/fasebj.5.14.1752358
  14. T. Kobayashi, W. D. Vieira, B. Potterf, C. Sakai, G. Imokawa, and V. J. Hearing, Modulation of melanogenic protein expression during the switch from eu-to pheomelanogenesis, J. Cell Sci., 108(6), 2301 (1995).
  15. L. D. P. Uyen, D. H. Nguyen, and E. K. Kim, Mechanism of skin pigmentation, Biotechnol. Bioprocess Eng., 13(4), 383 (2008). https://doi.org/10.1007/s12257-008-0143-z
  16. D. H. Nguyen, D. T. M. Nguyen, L. H. La, S. H. Yang, H. B. Lee, R. J. Kim, J. H. Shin, D. M. Kim, and E. K. Kim, Depigmenting effect of Cinnamomum cassia Presl in B16F10 melanoma cells, Korean J. Chem. Eng., 24(5), 827 (2007). https://doi.org/10.1007/s11814-007-0048-0
  17. H. G. Kim and K. H. Kang, Bionomical characteristic of Protaetia brevitarsis, Korean J. Appl. Entomol., 44(2), 139 (2005).
  18. H. G. Kim and K. H. Kang, Imago's flight and larvael activities of Protaetia brevitarsis (Coleoptera: Scarabaedia) and Allomyrina dichotoma (Coleoptera : Dynastinae), Korean J. Appl. Entomol., 45(2), 139 (2006).
  19. R. Busca and R. Ballotti, Cyclic AMP a key messenger in the regulation of skin pigmentation, Pigm. Cell Res., 13(2), 60 (2000). https://doi.org/10.1034/j.1600-0749.2000.130203.x
  20. D. H. Cho, Y. M. Cho, and J. I. Lee, Fruitbody formation of Cordyceps militaris in Allomyrina dichotoma Linnaeus, Korean J. Plant Res., 16, 1 (2003).
  21. H. G. Kim, K. H. Kang, and C. Y. Hwang, Effect of some environmental factors on oviposition and developmental characteristic of Protaetia brevitars is and Allomyrina dichotoma, Korean J. Appl. Entomol., 44(4), 283 (2005).
  22. H. Y. Park, S. S. Park, H. W. Oh, and J. I. Kim, General characteristics of the white-spotted flower chafer, Protaetia brevitarsis reared in the laboratory, Korean J. Entomol., 24, 1 (1994).
  23. H. C. Lee, S. G. Hwang, Y. K. Kang, H. O. Sohn, J. Y. Moon, H. B. Lim, B. H. Jeon, and D. W. Lee, Influence of Protaetia brevitarsis extract on liver damage induced by carbon tetrachloride and ethanol in rats, Korean J. Life Sci., 11, 405 (2001).
  24. S. Y. Lee, H. J. Moon, S. Kurata, T. Kurama, S. Natori, and B. L. Lee, Purification and molecular cloning of cDNA for an inducible antibacterial protein of larvae of a coleopteran insect, Holotrichia diomphalia, J. Biochem., 115(1), 82 (1994). https://doi.org/10.1093/oxfordjournals.jbchem.a124309
  25. S. Y. Lee, H. J. Moon, S. Kurata, S. Natori, and B. L. Lee, Purification and cDNA cloning of antifungal protein from the hemolymph of Holotrichia diomphalia larvae, Biol. Pharm. Bull., 18(8), 1049 (1995). https://doi.org/10.1248/bpb.18.1049
  26. S. Y. Lee, H. J. Moon, S. Kawabata, S. Kurata, S. Natori, and B. L. Lee, A sapecin homologue of Holotrichia diomphalia: purification, sequencing and determination of disulfide pairs, Biol. Pharm. Bull., 18(3), 457 (1995). https://doi.org/10.1248/bpb.18.457
  27. S. Y. Hwang, Y. G. Lee, S. G. Hwang, H. B. Lim, Y. I. Kim, K. H. Jang, B. H. Jeon, D. W. Lee, and H. C. Lee, Subchronic toxicity of Protaetia brevitarsis in rats, Kor. J. Ori. Med. Physiol. Pathol., 15, 703 (2001).
  28. H. C. Lee, S. Y. Hwang, S. G. Hwang, B. H. Jeon, and D. W. Lee, Acute oral toxicity of Protaetia brevitarsis homogenate in rats, Kor. J. Ori. Med. Physiol. Pathol., 15, 543 (2001).
  29. W. J. Yoon, J. A. Lee, J. Y. Kim, S. B. Kim, and S. Y. Park, Antioxidant activity and physiological function of the Anomala albopilosa extracts, J. Korean Soc. Food Sci. Nutr., 36(6), 670 (2007). https://doi.org/10.3746/jkfn.2007.36.6.670
  30. I. J. Kang, C. K. Chung, S. J. Kim, S. M. Nam, and S. H. Oh, Effects of Protaetia orientalis (Gory et Perchlon) larva on the lipid metabolism in carbon tetrachloride administered rats, Korean J. Electron Microsc., 31(1), 9 (2001).
  31. Y. C. Yoo, B. H. Shin, J. H. Hong, J. Lee, H. Y. Chee, K. S. Song, and K. B. Lee, Isolation of fatty acids with anticancer activity from Protaetia brevitarsis larva, Arch. Pharm. Res., 30(3), 361 (2007). https://doi.org/10.1007/BF02977619
  32. H. J. Suh and S. C. Kang, Antioxidant activity of aqueous methanol extracts of Protaetia brevitarsis Lewis (Coleoptera: Scarabaedia) at different growth stages, Nat. Prod. Res., 26(6), 510 (2012). https://doi.org/10.1080/14786419.2010.530267
  33. E. S. Lee, Master's Thesis Dissertation, Daegu Haany Univ., Gyeongbuk, Korea (2015).
  34. J. S. Park, S. H. Park, I. S. Oh, Y. N. Chang, K. S. Bang, E. J. Byeon, and J. H. Lee, A comparative study of physiological activity of Glycyrrhiza uralensis Fischer stems and leaves by processing methods, Korean J. Plant Res., 26(5), 539 (2013). https://doi.org/10.7732/kjpr.2013.26.5.539
  35. S. H. Xuan, A. R. Kim, Y. J. Jeong, N. H. Lee, and S. N. Park, Antioxidant and cellular protective effects of Moringa oleifera leaves extract, J. Soc. Cosmet. Sci. Korea, 42(3), 217 (2016). https://doi.org/10.15230/SCSK.2016.42.3.217
  36. E. Y. Yun, Evaluation of pharmacological action and toxicity of insect resources for development as food and medicinal material, MAFRA, 85 (2014).

Cited by

  1. Properties of Aqueous Extract of Protaetia Brevitarsis Larva and Mountain Ginseng Fermented by <i>Lactobacillus brevis</i> vol.33, pp.5, 2018, https://doi.org/10.13103/JFHS.2018.33.5.369