References
- E. AHMED, A. S. HEGAZI, A. S. ELGAZZAR, On persistence and stability of some biological systems with cross-diffusion, Advances in Complex Systems 7(1) (2004), 65-76. https://doi.org/10.1142/S0219525904000056
- H. AMANN, Non-homogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992), 9-126, Teubner-Texte Math. 133, Teubner, Stuttgart, 1993.
- J. BROWNLEE, The mathematical theory of random migration and epidemic distribution, Proc. Roy. Soc. Edinburgh 31 (1911), 262-289.
- H. S. CARSLAW, J. C. JAEGER, Conduction of Heat in Solids, 2nd ed., Oxford Univ. Press, 1959.
- E. CONWAY, D. HOFF, J. SMOLLER, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math. 35 (1978), 1-16. https://doi.org/10.1137/0135001
- R. A. FISHER, The wave of advance of advantageous genes, Ann. Eugenics 7 (1937), 353-369.
- H. I. FREEDMAN, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980.
- M. E. GURTIN, Some mahematical models for population dynamics that lead to segregation, Quart. J. Appli. Math. 32 (1974), 1-9. https://doi.org/10.1090/qam/437132
- T. HILLEN, K. J. PAINTER, A user's guide to PDE models for chemotaxis, Journal of Mathematical Biology 58 (2009), 183-217. https://doi.org/10.1007/s00285-008-0201-3
- C. HOLLING, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can. 45 (1965), 3-60.
- E. F. KELLER, L. A. SEGEL, Model for chemotaxis, J. Theor. Biol. 30 (1971), 225-234. https://doi.org/10.1016/0022-5193(71)90050-6
- M. G. KENDALL, A form of wave propagation associated with the equation of heat conduction, Proc. Cambridge Phil. Soc. 44 (1948), 591-593. https://doi.org/10.1017/S0305004100024609
- K. KISHMOTO, The diffusive Lotka-Volterra system with three species can have a stable, non-constant equilibrium solution, J. Math. Biol. 16 (1982), 103-112. https://doi.org/10.1007/BF00275163
- K. KISHIMOTO, M. MIMURA, K. YOSHIDA, Stable spatio-temporal oscillations of diffusive Lotka-Volterra system with 3 or more species, J. Math. Biol. 18 (1983), 213-221. https://doi.org/10.1007/BF00276088
- W. KO, I. AHN, Positive coexistence for a simple food chain model with ratiodependent functional response and cross-diffusion, Commun. Korean Math. Soc. 21(4) (2006), 701-717. https://doi.org/10.4134/CKMS.2006.21.4.701
- A. KOLMOGOROV, I. PETROVSKII, N. PISCOUNOV, A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem, In V. M. TIKHOMIROV, editor, Selected Works of A. N. Kolmogorov I, Kluwer 1991, 248-270. Translated by V. M. Volosov from Bull. Moscow Univ., Math. Mech. 1 (1937), 1-25.
- Y. KUANG, H. FREEDMAN, Uniqueness of limit cycles in Gause-type models of predator-prey system, Math. Biosci. 88 (1988), 67-84. https://doi.org/10.1016/0025-5564(88)90049-1
- K. KUTO, Stability of steady-state solutions to a prey-predator system with crossdiffusion, J. Differential Equations 197 (2004), 293-314. https://doi.org/10.1016/j.jde.2003.10.016
- K. KUTO, Y. YAMADA, Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations 197(2) (2004), 315-348. https://doi.org/10.1016/j.jde.2003.08.003
- S. A. LEVIN, Dispersion and population interactions, Amer. Naturalist 108 (1974), 207-228. https://doi.org/10.1086/282900
- R. MAY, Stability and Complexity in Model Ecosystems, 2nd ed., Princeton Univ. press, Princeton, 1974.
- M. MIMURA, T. NISHIDA, On a certain semilinear parabolic system related to Lotka-Volterra's ecological model, Publ. Research Inst. Math. Sci. Kyoto Univ. 14 (1978), 269-282. https://doi.org/10.2977/prims/1195189063
- J. D. MURRAY, Non-existence of wave solutions for the class of reaction-diffusion eqautions given by the Volterra interacting-population equations with diffusion, J. Theor. Biol. 52 (1975), 459-469. https://doi.org/10.1016/0022-5193(75)90012-0
- A. OKUBO, L. A. LEVIN, Diffusion and Ecological Problems: modern perspective, Interdisciplinary Applied Mathematics, 2nd ed., Vol. 14, Springer, New York, 2001.
- H. G. OTHMER, Current problems in pattern formation, Lectures on Mathematics in the Life Sciences 9 (1977), 57-85, S. A. Levin (ed), Amer. Math. Soc.
- C. PAO, Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion, Nonlinear Analysis 60 (2005), 1197-1217. https://doi.org/10.1016/j.na.2004.10.008
- K. PEARSON, J. BLAKEMAN, Mathematical contributions to the theory of evolution - XV. A mathematical theory of random migration, Drapers' Company Research Mem. Biometric Series III, Dept. Appl. Math., Univ. College, Univ. London, 1906.
- L. REAL, Ecological determinants of functioal response, Ecology 60 (1979), 481-485. https://doi.org/10.2307/1936067
- K. RYU, I. AHN, Coexistence theorem of steady states for nonlinear self-cross diffusion system with competitive dynamics, J. Math. Anal. Appl. 283 (2003), 46-65. https://doi.org/10.1016/S0022-247X(03)00162-8
- L. A. SEGEL, J. L. JACKSON, Dissipative structure: An explanation and an ecological example, J. Theor. Biol. 37 (1952), 545-559.
- N. SHIESADA, K. KAWASAKI, E. TERAMOTO, Spatial segregation of interacting species, J. Theor. Biol. 79 (1978), 83-99.
- S.-A. SHIM, Uniform Boundedness and Convergence of Solutions to Cross-Diffusion Systems, J. Differential Equations 185 (2002), 281-305. https://doi.org/10.1006/jdeq.2002.4169
- S.-A. SHIM, Long-time Properties of Prey-Predator System with Cross-Diffusion, Comm. KMS 21(2) (2006), 293-320.
- S.-A. SHIM, Global Existence of Solutions to the Pre-Predator system with a Single Cross-Diffusion, Bull. KMS 43(2) (2006), 443-459.
-
S.-A. SHIM,
$W^{1}_{2}$ -estimates on the prey-predator systems with cross-diffusion and functional responses, Comm. KMS 23(2) (2008), 211-227. - S.-A. SHIM, Mathematical models for population changes of two interacting species, The Korean Journal for History of Mathematics 25(1) (2012), 45-56.
- J. G. SKELLAM, Random dispersal in theoretical populations, Biometrika 38 (1951), 196-218. https://doi.org/10.1093/biomet/38.1-2.196
- J. G. SKELLA, Some philosophical aspects of mathematical modelling in empirical science with special reference to ecolgy, Mathematical Models in Ecology 13-28, J.N.R. Jeffers (ed.), London, Blackwell Sci. Publ., 1972.
- J. G. SKELLAM, The formulation and interpretation of mathematical models of diffusion processes in population biology, Mathematical Theory of the Dynamics of Biological Populations, 63-85, M.S. Bartlett, R.W. Hiorns (eds.), New York, Academic press, 1973.
- M. A. TSYGANOV, J. BRINDLEY, A. V. HOLDEN, V. N. BIKTASHEV, Soliton-like phenomena in one-dimensional cross-diffusion systems: a predator-prey pursuit and evasion example, Phys. D 197(1-2)(2004), 18-33. https://doi.org/10.1016/j.physd.2004.06.004
- A. M. TURING, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. London B 237 (1952), 37-72. https://doi.org/10.1098/rstb.1952.0012
- X. ZENG, Non-constant positive steady states of a prey-predator system with crossdiffusions, J. Math. Anal. Appl. 332(2) (2007), 989-1009. https://doi.org/10.1016/j.jmaa.2006.10.075