DOI QR코드

DOI QR Code

Evaluation of Health Impact of Heat Waves using Bio-Climatic impact Assessment System (BioCAS) at Building scale over the Seoul City Area

생명기후분석시스템(BioCAS)을 이용한 폭염 건강위험의 검증 - 서울시 건물규모를 중심으로 -

  • Received : 2016.07.14
  • Accepted : 2016.12.22
  • Published : 2016.12.31

Abstract

The Bio-Climatic impact Assessment System, BioCAS was utilized to produce analysis maps of daily maximum perceived temperature ($PT_{max}$) and excess mortality ($r_{EM}$) over the entire Seoul area on a heat wave event. The spatial resolution was 25 m and the Aug. 5, 2012 was the selected heat event date. The analyzed results were evaluated by comparing with observed health impact data - mortality and morbidity - during heat waves in 2004-2013 and 2006-2011,respectively. They were aggregated for 25 districts in Seoul. Spatial resolution of the comparison was equalized to district to match the lower data resolution of mortality and morbidity. Spatial maximum, minimum, average, and total of $PT_{max}$ and $r_{EM}$ were generated and correlated to the health impact data of mortality and morbidity. Correlation results show that the spatial averages of $PT_{max}$ and $r_{EM}$ were not able to explain the observed health impact. Instead, spatial minimum and maximum of $PT_{max}$ were correlated with mortality (r=0.53) and morbidity (r=0.42),respectively. Spatial maximum of $PT_{max}$, determined by building density, affected increasing morbidity at daytime by heat-related diseases such as sunstroke, whereas spatial minimum, determined by vegetation, affected decreasing mortality at nighttime by reducing heat stress. On the other hand, spatial maximum of $r_{EM}$ was correlated with morbidity (r=0.52) but not with mortality. It may have been affected by the limit of district-level irregularity such as difference in base-line heat vulnerability due to the age structure of the population. Areal distribution of the heat impact by local building and vegetation, such as spatial maximum and minimum, was more important than spatial mean. Such high resolution analyses are able to produce quantitative results in health impact and can also be used for economic analyses of localized urban development.

생명기후분석시스템(BioCAS)을 이용하여 서울시 전역의 폭염사례일 기온, 인지온도(PT), 초과사망률($r_{EM}$) 분포를 분석하였다. 분석 해상도는 25m 였으며, 사례일은 2012년 8월 5일이었다. 분석 결과는 관측된 사망률 및 내원환자수 자료와의 비교를 통해 평가되었다. 2004년에서 2013년의 폭염 원인인 사망률 자료와 2006년에서 2011년의 국민건강보험공단의 폭염 내원환자수 자료를 이용하여 행정구별 폭염 건강위험 자료를 추출하였다. 자료 비교를 위한 공간 해상도는 사망률 및 내원환자수 자료의 해상도인 행정구 단위였다. BioCAS에서 분석된 사례일 최고 인지온도 및 초과사망률 분포 자료는 행정구별 공간 평균, 최대, 최소 및 누적값으로 변환된 후 건강피해자료와 상관분석이 수행되었다. 분석 결과 일 최고 인지온도 및 초과사망률의 공간 평균값은 건강피해를 설명하지 못하는 것으로 나타났다. 대신 일 최고 인지온도의 공간 최솟값은 사망률과, 공간 최댓값은 내원환자수와 상관관계가 있는 것으로 나타났다(각각 r=0.53, r=0.42). 즉, 밀집된 건물에 의해 생겨나는 공간 최댓값은 낮 동안의 일사병 발생과 내원환자수 증가에 영향을 주었고, 식생에 의해 나타나는 공간 최솟값은 밤 동안의 열 스트레스를 감소시켜 사망률에 영향을 주었던 것으로 판단된다. 한편 분석된 초과사망률($r_{EM}$)은 공간 최댓값과 내원환자수가 상관관계가 있었지만(r=0.52) 사망률과의 상관관계는 인정되지 않았는데, 이것은 연령별 인구구성 차이에 따른 기저 폭염위험도 차이 등 행정구별 불균일성을 고려하지 못한 한계가 나타난 것으로 판단된다. 개별 건물과 식생의 열적 효과는 공간 평균보다 최대, 최소 등 그 분포가 중요한 것으로 나타났다. 이러한 고해상도 분석기술은 도시의 건강영향평가를 통해 도시개발에 관한 경제성 분석에 활용이 가능할 것으로 기대된다.

Keywords

References

  1. Armstrong BG, Chalabi Z, Fenn B, Hajat S, Kovats S, Milojevic A, Wilkinson P. 2011. Association of mortality with high temperatures in a temperate climate: England and Wales. J. Epidemiol Community Health 65(4): 340-345. https://doi.org/10.1136/jech.2009.093161
  2. Curriero FC, Heiner KS, Samet JM, Zeger SL, Strug L, Patz JA. 2002. Temperature and mortality in 11 cities of the eastern United States. American Journal of Epidemiology 155(1): 80-87. https://doi.org/10.1093/aje/155.1.80
  3. Hajat S. 2006. Climate change: extreme weather events (in Wilkinson, P. ed., "Environmental Epidemiology"). Berkshire England: Open University Press.
  4. Kim KR, Kwon TH, Kim YH, Koo HJ, Choi BC, Choi CY. 2009. Restoration of an inner-city stream and its impact on air temperature and humidity based on longterm monitoring data. Adv. Atmos. Sci. 26(2): 283-292. https://doi.org/10.1007/s00376-009-0283-x
  5. Kim KR, Yi C, Lee JS, Meier F, Jaenicke B, Fehrenbach U, Scherer D. 2014. BioCAS: Biometeorological Climate impact Assessment System for building-scale impact assessment of heat-stress related mortality. Die Erde 145(1-2): 62-79.
  6. Konarska J, Uddling J, Holmer B, Lutz M, Lindberg F, Pleijel H, Thorsson S. 2016. Transpiration of urban trees and its cooling effect in a high latitude city. Int J Biometeorol. 60(1): 159-172. https://doi.org/10.1007/s00484-015-1014-x
  7. Kwon TH, Kim KR, Byon JY, Choi YJ. 2009. Spatiotemporal changes of the thermal environment by the restoration of an inner-city stream. J of Environmental Impact Assessment 18(6): 321-330. [Korean Literature]
  8. Lindberg F, Grimmond CSB. 2011. The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: model development and evaluation. Theoretical and Applied Climatology 105(3-4): 311-323. https://doi.org/10.1007/s00704-010-0382-8
  9. Nastos PT, Kapsomenakis J. 2015. Regional climate model simulations of extreme air temperature in Greece. Abnormal or common records in the future climate? Atmospheric Research 152(15): 43-60. https://doi.org/10.1016/j.atmosres.2014.02.005
  10. Nastos PT. Matzarakis A. 2012. The effect of air temperature and human thermal indices on mortality in Athens, Greece. Theoretical and Applied Climatology 108(3): 591-599. https://doi.org/10.1007/s00704-011-0555-0
  11. Scherer D, Fehrenbach U, Beha HD, Parlow E. 1999. Improved concepts and methods in analysis and evaluation of the urban climate for optimizing urban planning processes. Atmospheric Environment 33(24-25): 4185-4193. https://doi.org/10.1016/S1352-2310(99)00161-2
  12. Shin YS, Ha JS, Bae HJ, Kim SD. 2011. Policy Directions for Assessment and Adaptation in Health Impacts of Climate Change. Korea Environment Institute. [Korean Literature]
  13. Staiger H, Laschewski G, Graetz A. 2012. The perceived temperature - a versatile index for the assessment of the human thermal environment. Part A: scientific basics. Int. J. Biometeorol 56(1): 165-176. https://doi.org/10.1007/s00484-011-0409-6
  14. Theeuwes NE, Steeneveld GJ, Ronda RJ, Heusinkveld BG, van Hove LWA, Holtslag AAM. 2014. Seasonal dependence of the urban heat island on the street canyon aspect ratio. Q. J. R. Meteorol. Soc. 140(684): 2197-2210. https://doi.org/10.1002/qj.2289
  15. Theeuwes NE, Steeneveld GJ, Ronda RJ, Holtslag AAM. 2016. A diagnostic equation for the daily maximum urban heat island effect for cities in northwestern Europe. Int. J. Climatol. DOI: 10.1002/joc.4717.
  16. Yi C, Kim KR, An SM, Choi YJ, Holtmann A, Jaenicke B, Fehrenbach U, Scherer D. 2016. Estimating spatial patterns of air temperature at building-resolving spatial resolution in Seoul, Korea. Int. J. Climatol. 36(2): 533-549. https://doi.org/10.1002/joc.4363

Cited by

  1. 식생냉각효과 적용을 통한 BioCAS의 폭염기간 일 최고기온 추정 개선 - 서울 및 수도권지역을 중심으로 - vol.29, pp.2, 2016, https://doi.org/10.14191/atmos.2019.29.2.131