DOI QR코드

DOI QR Code

Evaluation of Pollution Loads Removal Efficiency of Vegetation Buffer Strips Using a Distributed Watershed Model

분포형 유역모델을 이용한 식생여과대의 오염부하 저감효과 분석

  • Received : 2016.10.20
  • Accepted : 2016.11.29
  • Published : 2016.12.31

Abstract

A distributed watershed model CAMEL(Chemicals, Agricultural Management and Erosion Losses) was applied to a part of grazing grassland and vegetation buffer strip(VBS) located in Daegwanryeong, Korea. A set of scenario analyses was carried out for grassland and VBS with various combinations of VBS widths, soil textures and ground surface slopes. The simulation results indicate that annual direct runoff decreases with wider VBS and the removal efficiency of pollutants generally decrease with steeper slopes. The removal efficiency of sediment is not significantly different with VBS widths. For gentle and medium slopes($10^{\circ}$, $20^{\circ}$), the removal efficiency of TOC and TN is not significantly different with VBS widths. As for a steep slope($30^{\circ}$), however, the removal efficiency of TOC and TN increases with narrower VBS. The removal efficiency of TP is generally high except for medium and steep slope of sandy loam where the removal efficiency of TP increases with wider VBS. This result of TP is contrary to the results of TOC and TN due to the adsorption characteristics of phosphorus associated with fine sediment particles. It is expected that CAMEL can be used for evaluating the effectiveness of VBS to reduce non-point source pollution discharges.

본 연구에서는 강원도 평창군 대관령면에 위치한 산지초지와 초지의 말단에 조성한 식생여과대(Vegetation Buffer Strip, VBS)에 분포형 유역모델 CAMEL을 적용하였다. 그리고 이를 통해 확보한 매개변수를 초지와 식생여과대로 구분한 다수의 시험격자에 적용하여 다양한 인자들에 의한 식생여과대 오염부하 저감효과를 평가하였다. 시험격자를 이용한 시나리오 모의결과, 식생여과대에서 강우의 직접유출량은 식생여과대 폭이 넓어질수록 감소하는 것으로 나타났으며, 전반적으로 경사가 높을수록 오염물질의 저감효율은 낮아지는 것으로 나타났다. 유사의 경우, 식생여과대 폭에 따른 저감효율은 전반적으로 큰 차이를 보이지 않았다. TOC와 TN의 경우, 시험격자의 경사가 $10^{\circ}$, $20^{\circ}$일 때, 식생여과대 폭에 따른 저감효율은 큰 차이를 보이지 않았으나, 경사가 $30^{\circ}$일 때 식생여과대 폭이 좁을수록 높은 저감효율을 보였다. 반면, TP의 경우, 양토(Loam)에서의 저감효율은 전반적으로 높지만, 사양토(Sandy loam)에서는 경사가 $20^{\circ}$, $30^{\circ}$일 때 식생여과대 폭이 넓을수록 높은 저감효율을 보이는 것으로 분석되었다. 이는 TOC와 TN의 모의결과와는 상반되는 결과로 대부분 입자성 물질로 존재하는 인의 경우 지표면에서의 포착현상으로 인해 길이에 따라 비례적으로 저감효율이 높아지는 경향을 보이는 것으로 사료된다. 본 연구에서 구축한 모델은 향후 비점오염물질의 유출을 효과적으로 저감할 수 있는 식생여과대 조성을 위한 기준 등을 제안하는데 효과적으로 사용될 수 있을 것으로 기대된다.

Keywords

References

  1. Chaubey I, Chiang L, Gitau MW, Mohamed S. 2010. Effectiveness of BMPs in improving water quality in a pasture dominated watershed. J. Soil Water Conserv. 65: 424-437. https://doi.org/10.2489/jswc.65.6.424
  2. Gupta H, Sorooshian S, Yapo P. 1999. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrologic Eng. 4(2): 135-143.
  3. Koo BK. 2010, Introduction to CAMEL, unpublished presentation material.
  4. Koo BK, Dunn SM, Ferrier RC. 2005. A distributed continuous simulation model to identify critical source areas of phosphorus at the catchment scale: model description. Hydrology and Earth System Sciences Discussions. 2(4): 1359-1404. https://doi.org/10.5194/hessd-2-1359-2005
  5. Lee JW, Eom JS, Kim BC, Jang WS, Ryu JC, Kang HW, Kim KS, Lim KJ. 2011. Water Quality Prediction at Mandae Watershed using SWAT and Water Quality Improvement with Vegetated Filter Strip. Journal of the Korean Society of Agricultural Engineers. 53(1): 37-45. [Korean Literature] https://doi.org/10.5389/KSAE.2011.53.1.037
  6. Ministry of Agriculture, Food and Rural Affairs. 2013. The pilot project plan for promoting pasture in hilly areas. [Korean Literature]
  7. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. 50(3): 885-900. https://doi.org/10.13031/2013.23153
  8. National Institute of Environmental Research. 2012. Guidelines for Non-point Source Management. [Korean Literature]
  9. National Institute of Environmental Research. 2014. Technical Guidelines for TMDL Management (2014). [Korean Literature]
  10. NRCS. 1999. The National Conservation Buffer Initiative; National Resource Conservation Service USDA: Washington DC, 53.
  11. Parajuli PB, Mankin KR, Barnes PL. 2008. Applicability of targeting vegetative filter strips to abate fecal bacteria and sediment yield using SWAT. Agricultural water management. 95: 1189-1200. https://doi.org/10.1016/j.agwat.2008.05.006
  12. Park MH, Cho HL, Koo BK. 2015. Development of a vegetation buffer strip module for a distributed watershed model CAMEL. Jouranl of the Korean Society of Environmental Impact Assessment. 24(5): 516-531. [Korean Literature] https://doi.org/10.14249/eia.2015.24.5.516
  13. Parkyn S. 2004. Review of riparian buffer zone effectiveness (No. 2004-2005). Ministry of Agriculture and Forestry.
  14. Park YS, Kim JG, Kim NW, Park JH, Jang WS, Choi JD, Lim KJ. 2008. Improvement of Sediment Trapping Efficiency Module in SWAT using VFSMOD-W Model. Journal of Korean Society on Water Quality. 24(4): 473-479. [Korean Literature]
  15. Sheshukov AY, Douglas-Mankin K, Daggupati P. 2009. Evaluating Effectiveness of Unconfined Livestock BMPs using SWAT. Proceedings of the 5th International SWAT Conference, Boulder, CO, Aug 5-7.
  16. Strohmeier K. 2002. Vegetative filter strips. Owen County Extension Agent for Agriculture and Natural Resources.
  17. The Water Environment (Diffuse Pollution) (Scotland) Regulations. 2008. http://www.opsi.gov.uk/legislation/scotland/ssi2008/pdf/ssi_20080054_en.pdf (accessed Feb 2009).