DOI QR코드

DOI QR Code

Comparative Analysis on the Relationships between the Centralities in Co-authorship Networks and Research Performance Considering the Number of Co-authors

공저자 수를 고려한 공저 네트워크 중심성과 연구성과의 연관성 분석

  • 이재윤 (명지대학교 문헌정보학과)
  • Received : 2016.11.21
  • Accepted : 2016.12.16
  • Published : 2016.12.30

Abstract

We analyzed the relationships between the co-authorship network centralities and the research performance indicators with the authors and the number of citations of the papers published for 10 years in Korean library and information science journals. In particular, the research performance indicators were calculated with normal counting and with fractional counting also. As a result of correlation analysis between the variables by setting the different ranges of the author groups to be analyzed according to the number of articles, it was possible to explain the inconsistent results of the previous studies on the correlations between the researchers' citation indicators and their co-authorship network centralities. Overall, the degree of co-authorship activities measured by collaboration coefficient showed no or negatively correlated with research performance. There were statistically significant positive correlations between the centralities and the research performance indicators, but the correlation was not significant in the analysis of the top 30 authors by number of articles.

국내 문헌정보학 분야에서 10년간 발표된 논문의 저자와 인용빈도를 대상으로 공저 네트워크에서의 중심성과 연구성과 지수 사이의 관계를 분석하였다. 특히 공저를 고려하지 않고 연구성과 지수를 산출하는 경우와 공저를 고려하여 연구성과 지수를 산출하는 경우로 나누어서 분석하였다. 또한 저자 집단을 논문 수에 따라 다르게 설정하여 지수 사이의 상관관계를 분석한 결과, 연구자의 인용지수와 연구자 중심성 사이의 상관관계에 대한 선행 연구의 일관성없는 결과를 설명해낼 수 있었다. 전체적으로 공저 활동의 정도는 연구성과와 상관관계가 유의하지 않았으며 일부에서는 오히려 부정적인 상관관계를 가진 것으로 나타났다. 중심성과 연구성과 사이의 관계는 통계적으로 유의한 긍정적인 상관관계가 나타났으나 상위 저자 30명만을 대상으로 분석한 결과에서는 상관관계가 유의하지 않았다.

Keywords

References

  1. 김은주, 남태우 (2015). 정신의학 분야 국제공동연구의 지식구조 네트워크에 관한 연구. 정보관리학회지, 32(3), 317-340. http://dx.doi.org/10.3743/KOSIM.2015.32.3.317(Kim, Eun-Ju, & Nam, Tae-Woo (2015). A study on the knowledge structure networks of international collaboration in psychiatry. Journal of the Korean Society for Information Management, 32(3), 317-340. http://dx.doi.org/10.3743/KOSIM.2015.32.3.317)
  2. 박치성 (2012). 행정학 학문공동체의 공동연구 네트워크 구조에 관한 연구: 1998-2009년간 24개 행정학 학술지의 논문공저자 네트워크의 분석을 중심으로. 한국사회와 행정연구, 22(4), 129-153.(Park, Chisung (2012). A study on the network structure of the public administration academic community using the coauthor network from 1998 to 2009. Korean Society and Public Administration, 22(4), 129-153.)
  3. 이수상 (2013). 연구자 네트워크의 중심성과 연구성과의 연관성 분석: 국내 기록관리학 분야 학술논문을 중심으로. 한국도서관.정보학회지, 44(3), 405-428.(Lee, Soo-Sang (2013). Analytical study on the relationship between centralities of research networks and research performances. Journal of Korean Library and Information Science Society, 44(3), 405-428.)
  4. 이재윤 (2006a). 계량서지적 네트워크 분석을 위한 중심성 척도에 관한 연구. 한국문헌정보학회지, 40(3), 191-214. http://dx.doi.org/10.4275/kslis.2006.40.3.191(Lee, Jae Yun (2006a). Centrality measures for bibliometric network analysis. Journal of the Korean Society for Library and Information, 40(3), 191-214. http://dx.doi.org/10.4275/KSLIS.2006.40.3.191)
  5. 이재윤 (2006b). 연구성과 측정을 위한 h-지수의 개량에 관한 연구. 정보관리학회지, 23(3), 167-186. http://dx.doi.org/10.3743/KOSIM.2006.23.3.167(Lee, Jae Yun (2006b). Some improvements on h-index: Measuring research outputs by citations. Journal of the Korean Society for Information Management, 23(3), 167-186. http://dx.doi.org/10.3743/KOSIM.2006.23.3.167)
  6. 이재윤 (2014). 공동연구 네트워크 분석을 위한 중심성 지수에 대한 비교 연구. 정보관리학회지, 31(3), 153-179. http://dx.doi.org/10.3743/KOSIM.2014.31.3.153(Lee, Jae Yun (2014). A comparative study on the centrality measures for analyzing research collaboration networks. Journal of the Korean Society for Information Management, 31(3), 153-179. http://dx.doi.org/10.3743/KOSIM.2014.31.3.153)
  7. 이재윤 (2015). 가중 네트워크를 위한 일반화된 지역중심성 지수. 정보관리학회지, 32(2), 7-23. http://dx.doi.org/10.3743/KOSIM.2015.32.2.007(Lee, Jae Yun (2015). A generalized measure for local centralities in weighted networks. Journal of the Korean Society for Information Management, 32(2), 7-23. http://dx.doi.org/10.3743/KOSIM.2015.32.2.007)
  8. 이재윤 (2016). 공저자 수를 고려한 h-지수 산출. 정보관리학회지, 33(3), 7-29. http://dx.doi.org/10.3743/2016.33.3.007(Lee, Jae Yun (2016). Calculating the h-index and its variants considering the number of authors in a paper. Journal of the Korean Society for Information Management, 33(3), 7-29. http://dx.doi.org/10.3743/2016.33.3.007)
  9. 임병학 (2013). 논문 공동저자 네트워크가 연구 성과에 미치는 영향에 대한 연구: 로고스경영연구의 공동저자를 중심으로. 로고스경영연구, 10(1), 1-20.(Leem, Byung-Hak (2013). An effect of co-authorship network on research performance: Focusing on co-authoring of Logos Management Review. Logos Management Review, 10(1), 1-20.)
  10. Abbasi, A., Altmann, J., & Hossain, L. (2011). Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures. Journal of Informetrics, 5(4), 594-607. http://dx.doi.org/10.1016/j.joi.2011.05.007
  11. Ajiferuke, I., Burell, Q., & Tague, J. (1988). Collaborative coefficient: A single measure of the degree of collaboration in research. Scientometrics, 14(5), 421-433. http://dx.doi.org/10.1007/BF02017100
  12. Bordons, M., Aparicio, J., Gonzalez-Albo, B., & Diaz-Faes, A. A. (2015). The relationship between the research performance of scientists and their position in co-authorship networks in three fields. Journal of Informetrics, 9(1), 135-144. http://dx.doi.org/10.1016/j.joi.2014.12.001
  13. Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69, 131-152. http://dx.doi.org/10.1007/s11192-006-0144-7
  14. Franceschet, M., & Costantini, A. (2010). The effect of scholar collaboration on impact and quality of academic papers. Journal of Informetrics, 4(4), 540-553, https://doi.org/10.1016/j.joi.2010.06.003
  15. Gazni, A., & Didegah, F. (2011). Investigating different types of research collaboration and citation impact: A case study of Harvard University's publications. Scientometrics, 87(2), 251-265. http://dx.doi.org/10.1007/s11192-011-0343-8
  16. Hirsch, J. E. (2005). An index to quantify an individual's scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569-16572. http://dx.doi.org/10.1073/pnas.0507655102
  17. Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26(1), 1-18. https://doi.org/10.1016/S0048-7333(96)00917-1
  18. Lariviere, V., Gingras, Y., Sugimoto, C. R., & Tsou, A. (2015). Team size matters: Collaboration and scientific impact since 1900. Journal of the Association for Information Science and Technology, 66(7), 1323-1332. http://dx.doi.org/10.1002/asi.23266
  19. Lee, Jae Yun, & Chung, EunKyong (2014). A comparative analysis on multiple authorship counting for author co-citation analysis. Journal of the Korean Society for Information Management, 31(2), 57-77. http://dx.doi.org/10.3743/KOSIM.2014.31.2.057
  20. Lee, S., & Bozeman, B. (2005). The impact of research collaboration on scientific productivity. Social Studies of Science, 35(5), 673-702. http://dx.doi.org/10.1177/0306312705052359
  21. Li, E. Y., Liao, C. H., & Yen, H. R. (2013). Co-authorship networks and research impact: A social capital perspective. Research Policy, 42(9), 1515-1530. http://dx.doi.org/10.1016/j.respol.2013.06.012