DOI QR코드

DOI QR Code

Effect of Relative Humidity on Physiology and Antioxidant Metabolism of Grafted Watermelon Seedlings

상대습도가 수박 접목묘의 생리 및 항산화 대사에 미치는 영향

  • Wei, Hao (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University) ;
  • Manivannan, Abinaya (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Muneer, Sowbiya (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University) ;
  • Kim, SooHoon (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University) ;
  • Ya, Liu (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Park, Ji Eun (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University) ;
  • Jeong, Byoung Ryong (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University)
  • 위호 (경상대학교 대학원 응용생명과학부(BK21 Plus)) ;
  • ;
  • ;
  • 김수훈 (경상대학교 대학원 응용생명과학부(BK21 Plus)) ;
  • 유아 (경상대학교 농업생명연구원) ;
  • 박지은 (경상대학교 대학원 응용생명과학부(BK21 Plus)) ;
  • 정병룡 (경상대학교 대학원 응용생명과학부(BK21 Plus))
  • Received : 2016.11.30
  • Accepted : 2016.12.23
  • Published : 2016.12.31

Abstract

This study investigated the effect of different relative humidity (RH) regimes on graft healing of grafted seedlings of watermelon (Citrullus vulgaris Schrad.). Two watermelon cultivars ('Speed' and 'Sambok Honey') were grafted onto the 'RS-Dongjanggun' bottle gourd rootstock (Lagenaria siceraria Stanld.) and the grafted seedlings were maintained under one of three relative humidity regimes, 95-96% [1.1-0.8 (day) or $0.8-0.6(night)\;g{\cdot}m^{-3}$ vapor pressure deficit (VPD)], 97-98% [ 0.7-0.4 (day) or $0.5-0.3(night)\;g{\cdot}m^{-3}$ (VPD)], or 99-100% [0.3-0.0 (day) or $0.2-0.0(night)\;g{\cdot}m^{-3}$ (VPD)] according to the Mollier diagram based on the air temperature of $25^{\circ}C\;day/18^{\circ}C\;night$ with 16 h photoperiod per day. Among the RH treatments, 97-98% significantly increased plant height and fresh weight of the rootstock and scion of the 'Speed' and it also enhanced the graft union connection of both cultivars after two days of grafting. However, plant height and thickness of the scion of 'Sambok Honey' was increased by the 99-100% RH treatment. Furthermore, both cultivars grown in the 95-96 and 97-98% RH treatments consisted of lower levels of endogenous $H_2O_2$ and less activities of antioxidant enzymes which illustrated the occurrence of less oxidative stress. Hence, the results of this study identified the optimal RH level for the graft healing of watermelon seedlings.

본 연구는 수박 접목묘의 활착에 미치는 상대습도의 영향을 알아보고자 수행하였다. 2품종('스피드', '삼복꿀')의 수박(Citrullus vulgaris Schrad.)을 'RS-동장군' 박 대목(Lagenaria siceraria Stanld.)에 접목하고, 접목묘는 주간 $25^{\circ}C$/야간 $18^{\circ}C$, 광주기는 1일 16시간 기준으로 몰리어다이어그램을 따라 3수준의 상대습도, 95-96%[1.1-0.8(주간) 또는 0.8-0.6(야간) $g{\cdot}m^{-3}$수분부족분(VPD)], 97-98%[0.7-0.4(주간) 또는 0.5-0.3(야간) $g{\cdot}m^{-3}$ VPD], 또는 99-100%[0.3-0.0(주간) 또는 0.2-0.0(야간) $g{\cdot}m^{-3}$ VPD]로 유지하였다. 상대습도 처리 중 97-98% 처리는 대목과 '스피드' 접수의 생체중과 초장을 가장 크게 증가시키며 접목 2일 후에 접합부의 연결을 향상시켰다. 그러나 '삼복꿀'의 경우 상대습도 99-100% 처리에서 경경과 초장이 증가하였다. 또한 상대습도 95-96%와 97-98% 처리에서 재배한 2 품종 모두 과산화수소가 덜 발생하고 산화적 스트레스의 지표인 항산화 효소의 활성이 덜 나타났다. 따라서 이 연구의 결과는 수박묘의 접목활착에 가장 적절한 상대습도는 97-98%였다.

Keywords

References

  1. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248- 254. https://doi.org/10.1016/0003-2697(76)90527-3
  2. Christou, A., G.A. Manganaris, and V. Fotopoulos. 2014. Systemic mitigation of salt stress by hydrogen peroxide and sodium nitroprusside in strawberry plants via transcriptional regulation of enzymatic and non-enzymatic antioxidants. Environ. Exp. Bot. 107:46-54. https://doi.org/10.1016/j.envexpbot.2014.05.009
  3. Cookson, S.J., M. J. C. Moreno, C. Hevin, L.Z.N. Mendome, S. Delrot, C. Trossat-Magnin, and N. Ollat. 2013. Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signalling, and secondary metabolism. J. Exp. Bot. 64:2997-3008. https://doi.org/10.1093/jxb/ert144
  4. Corbesier, L., C. Vincent, S. Jang, F. Fornara, Q. Fan, I. Searle, A. Giakountis, S. Farrona, L. Gissot, C. Turnbull, and G. Coupland. 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030-1033. https://doi.org/10.1126/science.1141752
  5. Estan, M.T., M.M. Martinez-Rodriguez, F. Perez-Alfocea, T.J. Flowers, and M.C. Bolarin. 2005. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J. Exp. Bot. 56:703-712. https://doi.org/10.1093/jxb/eri027
  6. Foreman, J., V. Demidchik, J.H. Bothwell, P. Mylona, H. Miedema, M.A. Torres, P. Linstead, S. Costa, C. Brownlee, J.D. Jones, and J.M. Davies. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422.442-446. https://doi.org/10.1038/nature01485
  7. Gechev, T.S. and J. Hille. 2005. Hydrogen peroxide as a signal controlling plant programmed cell death. J. Cell Biol. 168:17-20. https://doi.org/10.1083/jcb.200409170
  8. Giannopolitis, C.N. and S.K. Ries. 1977. Superoxide dismutases. Plant Physiol. 59:309-314. https://doi.org/10.1104/pp.59.2.309
  9. Gill, S.S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
  10. Kim, M., W. Canio, S. Kessler, and N. Sinha. 2001. Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293:287-289. https://doi.org/10.1126/science.1059805
  11. Kollmann, R. C. and Glockmann. 1985. Studies on graft unions. I. Plasmodesmata between cells of plants belonging to different unrelated taxa. Protoplasma 124:224-235. https://doi.org/10.1007/BF01290774
  12. Manivannan, A., P. Soundararajan, L.S. Arum, C.H. Ko, S. Muneer, and B.R. Jeong. 2015. Silicon-mediated enhancement of physiological and biochemical characteristics of Zinnia elegans 'Dreamland Yellow' grown under salinity stress. Hort., Environ., Biotechnol. 56:721-731. https://doi.org/10.1007/s13580-015-1081-2
  13. Muneer, S., C.H. Ko, P. Soundararajan, A. Manivnnan, Y.G. Park, and B.R. Jeong. 2015. Proteomic study related to vascular connections in watermelon scions grafted onto bottlegourd rootstock under different light intensities. Plos One DOI:10.1371/journal. pone.0120899.
  14. Olmstead, M.A., N.S. Lang, F.W. Ewers, and S.A. Owens. 2006. Xylem vessel anatomy of sweet cherries grafted onto dwarfing and nondwarfing rootstocks. J. Amer. Soc. Hort. Sci. 131:577-585.
  15. Ostendorp, A., S. Pahlow, J. Deke, M. Thiess, and J. Kehr. 2016. Protocol: Optimisation of a grafting protocol for oilseed rape (Brassica napus) for studying long-distance signalling. Plant Methods 12:22-30. https://doi.org/10.1186/s13007-016-0122-x
  16. Shah, K. and N. Sareeta. 2012. Heat exposure alters the expression of SOD, POD, APX and CAT isozymes and mitigates low cadmium toxicity in seedlings of sensitive and tolerant rice cultivars. Plant Physiol. Biochem. 57:106-113. https://doi.org/10.1016/j.plaphy.2012.05.007
  17. Shekhawat, G.S., K. Verma, S. Jana, K. Singh, P. Teotia, and A. Prasad. 2010. In vitro biochemical evaluation of cadmium tolerance mechanism in callus and seedlings of Brassica juncea. Protoplasma 239:31-38. https://doi.org/10.1007/s00709-009-0079-y
  18. Soumelidou, K., N.H. Battey, P. John, and J.R. Barnett. 1994. The anatomy of the developing bud union and its relationship to dwarfing in apple. Ann. Bot. 74:605-611. https://doi.org/10.1006/anbo.1994.1161
  19. Stegemann, S. and R. Bock. 2009. Exchange of genetic material between cells in plant tissue grafts. Science 324:649-651. https://doi.org/10.1126/science.1170397
  20. Yin, H., B. Yan, J. Sun, P. Jia, Z. Zhang, X. Yan, J. Chai, Z. Ren, G. Zheng, and H. Liu. 2012. Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation. J. Exp. Bot. 109:1-14.