DOI QR코드

DOI QR Code

Analysis of the Outdoor Design Conditions for Greenhouse Heating and Cooling Systems in Korea

온실의 냉난방시스템 설계용 외부기상조건 분석

  • Nam, Sang-Woon (Department of Agricultural and Rural Engineering, Chungnam National University) ;
  • Shin, Hyun-Ho (Department of Agricultural and Rural Engineering, Chungnam National University)
  • 남상운 (충남대학교 지역환경토목학과) ;
  • 신현호 (충남대학교 지역환경토목학과)
  • Received : 2016.11.11
  • Accepted : 2016.11.28
  • Published : 2016.12.31

Abstract

In order to set the outdoor weather conditions to be applied to the design standard of the greenhouse heating and cooling system, outdoor air temperature and heating degree-hour for heating design, dry bulb temperature, wet bulb temperature and solar irradiance for cooling design were analyzed and presented. For every region in Korea, we used thirty years from 1981 to 2010 hourly weather data for analysis, which is the current standard of climatological normal provided by KMA. Since the use of standard weather data is limited, design weather conditions were obtained using the entire weather data for 30 years, and the average value of the entire data period was presented as a design standard. The design weather data with exceedance probability of 1, 2.5, and 5% were analyzed by the TAC method, and we presented the distribution map with exceedance probability of 1% for heating and 2.5% for cooling which are recommended by design standards. The changes of maximum heating load, seasonal heating load and maximum cooling load were examined by regions, exceedance probabilities, and setpoint temperatures. The proposed outdoor design conditions can be used not only directly for the greenhouse heating and cooling design, but also for the reinforcement of heating and cooling facilities and the establishment of energy saving measures. Recently, due to the climate change, sweltering heat in summer and abnormal temperature in winter are occurring frequently, so we need to analyze weather data periodically and revise the design standard at least every 10 years cycle.

온실의 냉난방시스템 설계 기준에 적용하기 위한 외부기상조건을 설정하기 위하여 난방 설계용 외기온, 난방 degree-hour, 냉방 설계용 건구온도, 습구온도, 일사량을 분석하여 제시하였다. 우리나라 전 지역을 대상으로 현재 기상청에서 제공하는 기후평년값 기준인 1981~2010년까지 30년간의 매 시각 기상자료를 분석에 사용하였다. 표준기상데이터의 이용이 제한적이기 때문에 30년간의 전체 기상자료를 이용하여 설계용 기상조건을 구하고, 전체 자료기간의 평균값을 설계기준으로 제시하였다. TAC 방식으로 위험률 1, 2.5, 5%에 대한 설계용 기상자료를 분석하고, 설계기준에서 추천하고 있는 난방용은 위험률 1%, 냉방용은 위험률 2.5%의 기상조건 분포도를 제시하였다. 지역별, 위험률별 및 설정온도별로 최대난방부하, 기간난방부하 및 최대냉방부하의 변화를 고찰하였다. 제시된 각종 설계용 기상조건은 온실의 냉난방시스템 설계에 직접 이용할 수 있을 뿐만 아니라 냉난방 설비 보강이나 에너지 절감대책의 수립에 활용이 가능할 것으로 판단된다. 한편 기후변화로 인하여 최근 여름철 폭염이나 겨울철 이상고온 현상이 자주 발생하고 있으므로 주기적인 설계용 기상자료의 분석이 필요하고, 최소한 10년 주기로 설계기준을 개정할 필요가 있는 것으로 생각된다. 본 연구에서는 현재 기후평년값 기준인 1981~2010년까지의 기상자료를 분석하였으나 이 기준이 1991~2020년으로 바뀌는 2021년에는 즉시 이 기간의 기상자료를 분석하여 새로운 설계기준으로 제공해야 할 것으로 판단된다.

Keywords

References

  1. ASABE. 2008. Standard: Heating, ventilating and cooling greenhouses, ANSI/ASAE EP406.4. American Society of Agricultural and Biological Engineers.
  2. ASHRAE. 2005, 2013. ASHRAE Handbook Fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers.
  3. JGHA. 2007. Handbook of protected horticulture 5th edition. Japan Greenhouse Horticulture Association (in Japanese).
  4. Kim, D.C., S.H. Kim, J.S. Seo, S.G. Lee and J.S. Geum. 1996. Development of the standard computer software and weather data for cooling and heating load calculation. Ministry of Commerce and Industry. p.115-142 (in Korean).
  5. Kim, M.K., S.G. Lee, W.M. Seo, and J.E. Son. 1997. Design standards for greenhouse environment. Rural Development Corporation (in Korean).
  6. KMA. 2013. Weather data(1981-2010). Korea Meteorological Administration.
  7. KSES. 2013. Korean Standard Weather Data. The Korean Solar Energy Society.
  8. Kwon, Y.S., Y.B. Lee and S.G. Park. 1984. Studies on the establishment of safety standard for protected cultivation environment. Horticultural Experimental Station Research Report: 287-333 (in Korean).
  9. Lee, S.G. 1985. Analysis of the heating degree hour for greenhouses. Journal of the Korean Society of Agricultural Engineers 27(3): 85-96 (in Korean).
  10. Lindley, J.A. and J.H. Whitaker. 1996. Agricultural buildings and structures. ASAE, Michigan, USA.
  11. Mihara, Y., 1978, Computation formula for greenhouse heating degree hour with consideration for sunshine, Journal of Agricultural Meteorology 34(2): 83-85. https://doi.org/10.2480/agrmet.34.83
  12. Nam, S.W., D.U. Seo, and H.H. Shin. 2015. Empirical analysis on the cooling load and evaporation efficiency of fogging system in greenhouses. Protected Horticulture and Plant Factory. 24(3):147-152 (in Korean). https://doi.org/10.12791/KSBEC.2015.24.3.147
  13. Nam, S.W., H.H. Shin, and D.U. Seo. 2014a. Comparative analysis of weather data for heating and cooling load calculation in greenhouse environmental design. Protected Horticulture and Plant Factory. 23(3):174-180 (in Korean). https://doi.org/10.12791/KSBEC.2014.23.3.174
  14. Nam, S.W., H.H. Shin, and D.U. Seo. 2014b. Comparative analysis of accumulated temperature for seasonal heating load calculation in greenhouses. Protected Horticulture and Plant Factory. 23(3):192-198 (in Korean). https://doi.org/10.12791/KSBEC.2014.23.3.192
  15. Nam, S.W. and H.H. Shin. 2015. Development of a method to estimate the seasonal heating load for plastic greenhouses. Journal of the Korean Society of Agricultural Engineers 57(5): 37-42 (in Korean).
  16. Shin, H.H. and S.W. Nam. 2015. Validation of load calculation method for greenhouse heating design and analysis of the influence of infiltration loss and ground heat exchange. Kor. J. Hort. Sci. Technol. 33(5): 647-657 (in Korean).
  17. SAREK. 2011. Handbook of facilities engineering. Vol. 2 Airconditioning. The Society of Air-Conditioning and Refrigerating Engineers of Korea. p.1-8 (in Korean).
  18. Yoon, J.H. 2003. Domestic and international status of standard weather data for evaluation of building energy performance. Magazine of the SAREK 32(8): 7-14 (in Korean).