DOI QR코드

DOI QR Code

LED 광원과 광도에 따른 참외의 묘소질 및 정식 후 생육 변화

Effect of Seedling Quality and Growth after Transplanting of Korean Melon Nursed under LED light Sources and Intensity

  • 이지은 (경상북도농업기술원 성주참외과채류연구소) ;
  • 신용습 (경상북도농업기술원 성주참외과채류연구소) ;
  • 도한우 (경상북도농업기술원 성주참외과채류연구소) ;
  • 정종도 (경상북도농업기술원 성주참외과채류연구소) ;
  • 강영화 (경북대학교 원예과학과)
  • Lee, Ji Eun (Seongju Korean Melon Fruit Vegetable Research Institute, Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Shin, Yong Seub (Seongju Korean Melon Fruit Vegetable Research Institute, Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Do, Han Woo (Seongju Korean Melon Fruit Vegetable Research Institute, Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Cheung, Jong Do (Seongju Korean Melon Fruit Vegetable Research Institute, Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Kang, Young Hwa (Deparment of Horticultural science, Kyungpook National University)
  • 투고 : 2016.11.01
  • 심사 : 2016.11.23
  • 발행 : 2016.12.31

초록

참외 육묘 시설 내에서 우수한 품질의 모종을 생산하기 위한 LED 광원의 이용 가능성을 검토하기 위해 접목 활착 후 20일 동안 광원과 광도를 달리하여 묘소질과 정식 후 생육을 비교하였다. 광원은 청색광(B), 적청색 혼합광원(RB3, RB7)을 이용하였고, 광도(PPFD)는 50, 100, $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$로 처리하였다. 조명시간은 일출(7:30) 전 2시간과 일몰(17:30) 후 2시간씩 하루에 총 4시간을 처리하는 일장연장법을 이용하였다. 참외 지상부의 생장지표인 접수 길이와 줄기직경은 청색광의 비율이 높을수록 길어지고 굵어지는 경향을 나타내었다. 적청색혼합광원(RB3)이 다른 광원들에 비해 건물률과 조직의 충실도가 높은 경향이었다. 광합성률은 적색광의 비율이 높을수록 증가하였으며, RB7 $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ 처리구에서 $5.44{\mu}molCO_2{\cdot}m^{-2}{\cdot}s^{-1}$로 가장 높았다. 정식 후 RB3 $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ 처리구의 초장이 132.3cm로 가장 길었고, 마디수가 22.7개로 가장 많았으며 개화율도 75%로 가장높았다. 청색광(B) 단독으로 처리한 것보다는 적청색 혼합광원(RB3)으로 처리한 것이 묘소질을 양호하게 하였고, 광도를 $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$로 높이는 것이 우량묘 생산에 유리할 것으로 판단되었다.

This study was conducted to analyze the seedling quality of korean melon and the growth after transplanting of korean melon nursed under the LED sources. LED sources were RB7 (Red:Blue=14:2), RB3 (Red:Blue=12:4) and Blue(B=16). Photosynthetic photon flux density(PPFD) was 50, 100 and $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The lighting treatment was started after graft-taken and was applied for 20 days at 4 hours(05:30 and 07:30, 17:30 and 19:30) per day. Plant height and stem diameter of scion were longer and thicker under a high ratio of blue light condition. Dry matter ratio and compactness were highest in RB3 compared to the other LED sources treatments. $CO_2$ exchange rate increased $5.44{\mu}molCO_2{\cdot}m^{-2}{\cdot}s^{-1}$ under RB7 $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and dropped to negative values under control. PPFD $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of RB3 resulted in the longest plant height by 132.3cm and flowering ratio also was the highest by 75%.

키워드

참고문헌

  1. Azad, O.K., I.J. Chun, J.H. Jeong, S.T. Kwon, and J.M. Hwang. 2011. Response of the growth characteristics and phytochemical contents of pepper (Capsicum annuum L.) seedling with supplemental LED light in glass house. J. Bio-Environ. Con. 20:182-188.
  2. Britz, S.J. and J.C. Sager. 1990. Photomorphogenesis and photoassimilation in soybean and sorghum grown under broad spectrum or blue-deficient light sources. Plant Physiol. 94:448-454. https://doi.org/10.1104/pp.94.2.448
  3. Carvalho, R.F., M. Takaki, and R.A. Azevedo. 2011. Plant pigments: The many faces of light perception. Acta Physiol. Plant 33:241-248. https://doi.org/10.1007/s11738-010-0533-7
  4. Choi, Y.H., C.K. Ahn, J.S. Kang, B.G. Son, I.S. Choi, Y.C. Kim, Y.G. Lee, K.K. Kim, and K.W. Son. 2003. Growth, photomorphogenesis, and photosynthesis of perilla grown under red, blue light emitting diodes and light intensities. J. Kor. Soc. Hort. Sci. 44:281-286 (in Korean).
  5. Heo, J.W., C.W. Lee, D. Chakrabarty, and K.Y. Paek. 2002. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a Light-Emitting Diode(LED). Plant Growth Regul. 38:225-230. https://doi.org/10.1023/A:1021523832488
  6. Hirai, T., W. Amaki, and H. Watanabe. 2006. Action of blue or red monochromatic light on stem internodal growth depends on plant species. Acta Hort. 711:345-350.
  7. Hoenecke, M.E., R.J. Bula, and T.W. Tibbitts. 1992. Importance of blue photon levels for lettuce seedlings grown under red-light-emitting diodes. HortScience 27:427-430.
  8. Hogewoning, S.W., G. Trouwborst, G.J. Engbers, J. Harbinson, W. van Ieperen, J. Ruijsch, and O. van Kooten. 2007. Plants physiological acclimation to irradiation by light-emitting diodes(LEDs). Acta Hort. 761:183-191.
  9. Hogewoning, S.W., G. Trouwborst, H. Maljaars, H. Poorter, W. van Ieperen, and J. Harbinson. 2010. Blue light doseresponses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Expt. Bot. 61:3107-3117. https://doi.org/10.1093/jxb/erq132
  10. Jang, Y.A., B.H. Mun, T.C. Seo, J.G. Lee, S.S. Oh, and C.H. Chun. 2013. Effects of light quality and intensity on the carbon dioxide exchange rate, growth, and morphogenesis of grafted pepper transplants during healing and acclimatization. Kor. J. Hort. Sci. Technol. 31:14-23.
  11. Jang, Y.A., H.J. Lee, C.S. Choi, Y.C. Um, and S.G. Lee. 2014. Growth characteristics of cucumber scion and pumpkin rootstock under different levels of light intensity and plug cell size under an artificial lighting condition. J. Bio-Environ. Con. 23:383-390 (in Korean). https://doi.org/10.12791/KSBEC.2014.23.4.383
  12. Jeong, S.W., S.W. Hogewoning, and W. van Ieperen. 2014. Responses of supplemental blue light on flowering and stem extension growth of cut chrysanthemum. Scientia Horticulturae 165:69-74. https://doi.org/10.1016/j.scienta.2013.11.006
  13. Johkan, M., K. Shoji, F. Goto, S. Hashida, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809-1814.
  14. Kim, I.S., C. Zhang, H.M. Kang, and B. Mackay. 2008. Control of stretching of cucumber and tomato plug seedlings using supplemental light. Hort. Environ. Bio. 49:287-292.
  15. Kim, S.H., Y.H. Heo, H.C. Rhee, and J.S. Kang. 2013. Effect of LED light quality and supplemental time on the growth and flowering of impatiens. J. Bio-Environ. Con. 22:214-219 (in Korean). https://doi.org/10.12791/KSBEC.2013.22.3.214
  16. Kim, Y.H. and H.S. Park. 2001. Graft-taking characteristics of watermelon grafted seedlings as affected by blue, red and far-red light-emitting diodes. J. of the Korean Society for Agricultural Machinery 28:151-156 (in Korean).
  17. Kim, Y.H. and S.H. Lee. 2006. Variation of plant temperature at joining parts of grafted watermelon seedlings graft-taken under different light quality. Biosystems Engineering 31:449-453. https://doi.org/10.5307/JBE.2006.31.5.449
  18. Kozai, T., C. Kubota, C. Chun, K. Ohyama, and F. Afreen. 2000. Necessity and concept of the closed transplant production system, in: Kubota, C. and Chun, C. (eds.), Transplant production in the 21st century. Kluwer Academic publisher, Dordrecht, pp. 3-19.
  19. Lee, J.E., Y.S. Shin, H.W. Do, H.R. Sohn, J.D. Cheung, S.H. Oh, and M.K. Kim. 2016. Manual of hight quality seedling production for korean melon. Seongju Korean Melon Fruit Vegetable Research Institute Press. pp. 94 (in Korean).
  20. Lee, J.S., H.I. Lee, and Y.H. Kim. 2012. Seedling quality and early yield after transplanting of papricka nursed under light-emitting diodes, fluorescent lamps and natural light. J. Bio-Environ. Con. 21:220-227 (in Korean).
  21. Markovic, V., M. Djurovka, Z. Ilin, and B. Lazic. 2000. Effect of seedling quality on yield characters of plant and fruits of sweet pepper. Acta Hort. 533:113-120.
  22. Okamoto, K., T. Yanagi, S. Takita, M. Tanaka, T. Higuchi, Y. Ushida, and H. Watanabe. 1996. Development of plant growth apparatus using blue and red LED as artificial light source. Acta Hort. 440:111-116.
  23. Park, H.Y., K.C. Son, E.G. Gu, K.B. Lim, and B.H. Kim. 1996. Effect of different day and night temperature regimes on the growth of hot pepper plug seedlings. J. Kor. Soc. Hort. Sci. 37:617-621.
  24. Rural Development Administration(RDA), Republic of Korea. 2012. Research analysis criteria of agricultural science and technology. Fifth edition. RDA Press. pp. 508 (in Korean).
  25. Senger, H. 1982. The effect of blue light on plants and microorganisms. Photochemistry and Photobiology. 35:911-920. https://doi.org/10.1111/j.1751-1097.1982.tb02668.x
  26. Son, K.H., J.H. Park, D.I. Kim, and M.M. Oh. 2012. Leaf shape index, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes. Kor. J. Hort. Sci. Technol. 30:664-672.
  27. Tibbitts, T.W., D.C. Morgan, and J.J. Warrington. 1983. Growth of lettuce, spinach, mustard and wheat plants under four combinations of high pressure sodium, metal halide and tungsten halogen lamps at equal PPFD. J. Amer. Soc. Hort. Sci. 108:622-630.
  28. Um, Y.C., Y.A. Jang, J.G. Lee, S.Y. Kim, S.R. Cheong, S.S. Oh, S.H. Cha, and S.C. Hong. 2009. Effects of selective light sources on seedling quality of tomato and cucumber in closed nursery system. J. Bio-Environ. Con. 18:370-376.
  29. Wang, H., M. Gu, J.X. Cui, K. Shi, Y.H. Zhou, and J.Q. Yu. 2009. Effects of light quality on $CO_2$ assimilation, chlorophyll-fluorescence quenching, expression of calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J. Photochemistry and photobiology B:Biology 96:30-37. https://doi.org/10.1016/j.jphotobiol.2009.03.010
  30. Wongnok, A., C. Piluek, T. Techasipitak, and S. Tantivivat. 2008. Effects of light emitting diodes on micropropagation of Phalaenopsis orchids. Acta Hort. 788:149-156.
  31. Yeh, N. and J.P. Chung. 2009. High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation. Renewable and Sustainable Energy Rev. 13:2175-2180. https://doi.org/10.1016/j.rser.2009.01.027
  32. Zhang, C.H., I.J. Chun, Y.C. Park, and I.S. Kim. 2003. Effect of timings and light intensities of supplemental red light on the growth characteristics of cucumber and tomato plug seedlings. J. Bio-Environ. Con. 12:173-179 (in Korean).