DOI QR코드

DOI QR Code

Evaluation of Thermal Insulation Properties of Covering Materials to Protect Peach Trunks against Freezing Injury

복숭아 주간부 동해 예방을 위한 피복재의 보온성 평가

  • Shin, Hyunsuk (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Yun, Seok Kyu (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Choi, In Myung (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Kim, Sung Jong (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Yun, Ik Koo (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Nam, Eun Young (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Kwon, Jung Hyun (Fruit Research Division, National Institute of Horticultural & Herbal Science)
  • 신현석 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 윤석규 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 최인명 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 김성종 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 윤익구 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 남은영 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 권정현 (농촌진흥청 국립원예특작과학원 과수과)
  • Received : 2016.10.10
  • Accepted : 2016.11.17
  • Published : 2016.12.31

Abstract

The study was performed to evaluate thermal insulation covering materials (TICMs) to protect peach trunks against freezing temperatures in winter season by investigating thermo-physical properties and practical thermal insulation effect of the TICMs which was made of white non-woven fabrics, yellow paper sheets, and waterproof fabric pads. Among the three TICMs, Waterproof fabric pad (double layer) possessed the best performance about thermal insulation rate and thermal resistance among three kinds of TICMs. Day thermal insulation effects of waterproof fabric pad, which prevent from temperature rise on the bark tissues of trunks during the day time, were $14.09^{\circ}C$. Night thermal insulation effects of them, which prevent from temperature decline on the bark tissues of trunks at night time, were $7.23^{\circ}C$. Waterproof fabric pad showed the highest day and night thermal insulation effects. Thus our results suggest that development of TICMs using waterproof fabric pad might be helpful to protect the bark tissues of trunks from freezing injury.

본 연구는 복숭아 주간부 동해 예방을 위한 피복재의 보온성을 평가하기 위해 백색부직포, 황색일반지, 방수패드로 만들어진 피복재의 물리적 특성 및 보온성을 평가하고 실제 겨울철 복숭아 주간부 보온효과를 구명하여 피복재로서의 이용가능성을 검토하기 위해 수행하였다. 세 피복재 중 2겹방수패드 처리가 보온율과 열저항성이 가장 우수하였다. 2겹방수패드 처리의 주간단열효과는 $14.09^{\circ}C$ 만큼 온도상승을 차단하였고, 야간보온효과는 $7.23^{\circ}C$ 만큼 온도하강을 차단하여 보온효과가 가장 우수함을 확인하였다. 따라서 방수패드 재질을 보온피복재로 개발 보급할 경우 복숭아 주간부 동해 피해를 경감시키는데 도움을 줄 수 있을 것으로 생각되었다.

Keywords

References

  1. Arora, R., M.E. Wisniewski, and R. Scorza. 1992. Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch). I. Seasonal changes in cold hardiness and polypeptides of bark and xylem tissue. Plant Physiol. 99:1562-1568. https://doi.org/10.1104/pp.99.4.1562
  2. Burke, M.J., L.V. Gusta, H.A. Quamme, C.J. Weiser, and P.H. Li. 1976. Freezing and injury in plants. Ann. Rev. Plant Physiol. 27:507-528. https://doi.org/10.1146/annurev.pp.27.060176.002451
  3. Flore, J.A. 1994. Stone fruit, pp. 233-270. In: B. Schaffer and P.C. Andersen (eds.). Handbook of environmental physiology of fruit crops. CRC Press. Boca Raton, Fla, USA. 310p.
  4. Johnson, D.E. and G.S. Howell. 1981. Factors influencing critical temperatures for spring freeze damage to developing primary shoots on Concord grapevines. Amer. J. Enol. Vitic. 32:144-148.
  5. Kalberer, S.R., M.E. Wisniewski, and R. Arora. 2006. Deacclimation and reacclimation of cold-hardy plants: Current understanding and emerging concepts. Plant Sci. 171:3-16. https://doi.org/10.1016/j.plantsci.2006.02.013
  6. Kim, Y.-B., S.-Y. Lee, and B.R. Jeong. 2009. Analysis of the insulation effectiveness of the thermal insulator by the installation methods. J. Bio-Environ. Cont. 18:332-340.
  7. Pagter, M., I. Lefevre, R. Arora, and J.F. Hausman. 2011. Quantitative and qualitative changes in carbohydrates associated with spring deacclimation in contrasting Hydrangea species. Environ. Exp. Bot. 72:357-367.
  8. Shin, H., Y. Oh, and D. Kim. 2015. Differences in cold hardiness, carbohydrates, dehydrins and related gene expressions under an experimental deacclimation and reacclimation in Prunus persica. Physiol. Plant. 154:485-499. https://doi.org/10.1111/ppl.12293
  9. Shin, H., S. Oh, R. Arora, and D. Kim. 2016. Proline accumulation in response to high temperature in winter-acclimated shoots of Prunus persica: A response associated with growth resumption or heat stress? Can. J. Plant Sci. 96:630-638.
  10. Thomashow, M.F. 1998. Role of cold-responsive genes in plant freezing tolerance. Plant Physiol. 118:1-7. https://doi.org/10.1104/pp.118.1.1
  11. Thomashow, M.F. 1999. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:571-599. https://doi.org/10.1146/annurev.arplant.50.1.571
  12. Wisniewski, M., E. Ashworth, and K. Schaffer. 1987. The use of lanthanum to characterize cell wall permeability in relation to deep supercooling and extracellular freezing in woody plants. I. Intergeneric comparisons between Prunus, Cornus, and Salix. Protoplasma 139:105-116. https://doi.org/10.1007/BF01282281
  13. Wisniewski, M., C. Bassett, and L.V. Gusta. 2003. An overview of cold hardiness in woody plants: Seeing the forest through the trees. HortScience 38:952-959.
  14. Wisniewski, M., M. Fuller, J. Palta, J. Carter, and R. Arora. 2004. Ice nucleation, propagation, and deep supercooling in woody plants. J. Crop. Improv. 10:5-16. https://doi.org/10.1300/J411v10n01_02