References
- Aragh, B.S. and Yas, M.H. (2010a), "Static and free vibration analyses of continuously graded fiber-reinforced cylindrical shells using generalized power-law distribution", Acta Mech., 215(1-4), 155-173. https://doi.org/10.1007/s00707-010-0335-4
- Aragh, B.S. and Yas, M.H. (2010b), "Three-dimensional analysis of thermal stresses in four-parameter continuous grading fiber reinforced cylindrical panels", Int. J. Mech. Sci., 52(8), 1047-1063. https://doi.org/10.1016/j.ijmecsci.2010.04.006
- Batra, R.C. and Jin, J. (2005), "Natural frequencies of a functionally graded anisotropic rectangular plate", J. Sound Vib., 282(1), 509-516. https://doi.org/10.1016/j.jsv.2004.03.068
- Benveniste, Y. (1987), "A new approach to the application of Mori-Tanaka's theory in composite materials", Mech. Mater., 6(2), 147-157. https://doi.org/10.1016/0167-6636(87)90005-6
- Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: A review", A review; Appl. Mech. Rev., 49(1), 1-28. https://doi.org/10.1115/1.3101882
- Bonnet, P., Sireude, D., Garnier, B. and Chauvet, O. (2007), "Thermal properties and percolation in carbon nanotube-polymer composites", J. Appl. Phys., 91(20), 1910.
- Chang, T. and Gao, H. (2003), "Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model", J. Mech. Phys. Solids, 51(6), 1059-1074. https://doi.org/10.1016/S0022-5096(03)00006-1
- Chen, C.H. and Cheng, C.H. (1996), "Effective elastic moduli of misoriented short-fiber composites", Int. J. Solids Struct., 33(17), 2519-2539. https://doi.org/10.1016/0020-7683(95)00160-3
- Cheng, Z.Q. and Batra, R. (2000), "Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates", J. Sound Vib., 229(4), 879-895. https://doi.org/10.1006/jsvi.1999.2525
- Endo, M., Hayashi, T., Kim, Y.A., Terrones, M. and Dresselhaus, M.S. (2004), "Applications of carbon nanotubes in the twenty-first century", Trans. R. Soc. Lond A, Mathematical, Physical and Engineering Sciences, 362(1823), 2223-2238. https://doi.org/10.1098/rsta.2004.1437
- Esawi, A.M. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
- Eshelby, J.D. (1957), "The determination of the elastic field of an ellipsoidal inclusion, and related problems", Proc. R. Soc. A, Mathematical, Physical and Engineering Sciences, 241(1226), 376-396. DOI: 10.1098/rspa.1957.0133
- Eshelby, J.D. (1959), "The elastic field outside an ellipsoidal inclusion", Proc. R. Soc. A, Mathematical, Physical and Engineering Sciences, 252(1271), 561-569. DOI: 10.1098/rspa.1959.0173
- Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Composites Part A, 36(11), 1555-1561. https://doi.org/10.1016/j.compositesa.2005.02.006
- Formica, G., Lacarbonara, W. and Alessi, R. (2010), "Vibrations of carbon nanotube-reinforced composites", J. Sound Vib., 329(10), 1875-1889. https://doi.org/10.1016/j.jsv.2009.11.020
- Fung, Y.c. and Tong, P. (2001), Classical and Computational Solid Mechanics, World Scientific.
- Giordano, S., Palla, P.L. and Colombo, L. (2009), "Nonlinear elasticity of composite materials", Eur. Phys. J. B., 68(1), 89-101. https://doi.org/10.1140/epjb/e2009-00063-1
- Griebel, M. and Hamaekers, J. (2004), "Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites", Mech. Eng., 193(17), 1773-1788.
- Gupta, U. and Ansari, A. (2002), "Effect of elastic foundation on asymmetric vibration of polar orthotropic linearly tapered circular plates", J. Sound Vib., 254(3), 411-426. https://doi.org/10.1006/jsvi.2000.3518
- Gupta, U.S., Lal, R. and Jain, S.K. (1990), "Effect of elastic foundation on axisymmetric vibrations of polar orthotropic circular plates of variable thickness", J. Sound Vib., 139(3), 503-513. https://doi.org/10.1016/0022-460X(90)90679-T
- Gupta, U.S., Lal, R. and Sagar, R. (1994), "Effect of an elastic foundation on axisymmetric vibrations of polar orthotropic Mindlin circular plates", Indian J. Pure Appl. Math., 25(12), 1317-1317.
- Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
- Hu, N., Fukunaga, H., Lu, C., Kameyama, M. and Yan, B. (2005), "Prediction of elastic properties of carbon nanotube reinforced composites", Proc. R. Soc. A, Mathematical, Physical and Engineering Sciences, 461(2058), 1685-1910. https://doi.org/10.1098/rspa.2004.1422
- Jabbari, M., Bahtui, A. and Eslami, M.R. (2006), "Axisymmetric mechanical and thermal stresses in thick long FGM cylinders", J. Therm. Stresses, 29(7), 643-663. https://doi.org/10.1080/01495730500499118
- Jin, Y. and Yuan, F. (2003), "Simulation of elastic properties of single-walled carbon nanotubes", Compos. Sci. Technol., 63(11), 1507-1515. https://doi.org/10.1016/S0266-3538(03)00074-5
- Ju, F. and Lee, H.P.K.H. (1995), "Free vibration of plates with stepped variations in thickness on nonhomogeneous elastic foundations", J. Sound Vib., 183(3), 533-545. https://doi.org/10.1006/jsvi.1995.0269
- Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92(3), 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024
- Laura, P.A. and Gutierrez, R.H. (1991), "Free vibrations of a solid circular plate of linearly varying thickness and attached to a Winkler foundation", J. Sound Vib., 144(1), 149-161. https://doi.org/10.1016/0022-460X(91)90738-6
- Liew, K.M., Han, J.B., Xiao, Z.M. and Du, H. (1996), "Differential quadrature method for Mindlin plates on Winkler foundations", Int. J. Mech. Sci., 38(4), 405-421. https://doi.org/10.1016/0020-7403(95)00062-3
- Malekzadeh, P. (2009), "Three-dimensional free vibration analysis of thick functionally graded plates on elastic foundations", J. Compos. Struct., 89(3), 367-373. https://doi.org/10.1016/j.compstruct.2008.08.007
- Matsunaga, H. (2000), "Vibration and stability of thick plates on elastic foundations", J. Eng. Mech. ASCE, 126(1), 27-34. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(27)
- Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higherorder deformation theory", Compos. Struct., 82(4), 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030
- Moniruzzaman, M. and Winey, K.I. (2006), "Polymer nanocomposites containing carbon nanotubes", Macromolecules, 39(16), 5194-5205. https://doi.org/10.1021/ma060733p
- Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metall., 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
- Mura, T. (1982), Micromechanics of Defects in Solids, Springer Science & Business Media.
- Odegard, G.M., Gates, T.S, Wise, K.E., Park, C. and Siochi, E.J. (2003), "Constitutive modeling of nanotube-reinforced polymer composites", Compos. Sci. Technol., 63(11), 1671-1687. https://doi.org/10.1016/S0266-3538(03)00063-0
- Qian, D., Dickey, E.C., Andrews, R. and Rantell, T. (2000), "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites", Appl. Phys. Lett., 76(20), 2868-2870. https://doi.org/10.1063/1.126500
- Reddy, J. and Cheng, Z.Q. (2001), "Three-dimensional thermomechanical deformations of functionally graded rectangular plates", Eur. J. Mech. A/Solids, 20(5), 841-855.
- Salvetat, D. and Rubio, A. (2002), "Mechanical properties of carbon nanotubes: A fiber digest for beginners", Carbon, 40(10), 1729-1734. https://doi.org/10.1016/S0008-6223(02)00012-X
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Shen, H.S. (2011), "Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: Axially-loaded shells", Compos. Struct., 93(8), 2096-2108. https://doi.org/10.1016/j.compstruct.2011.02.011
- Shen, H.S. (2012), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite cylindrical shells", Compos. Part B, Engineering, 43(3), 1030-1038. https://doi.org/10.1016/j.compositesb.2011.10.004
- Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048
- Shen, H.S. and Zhu, Z.H. (2010), "Buckling and postbuckling behavior of functionally graded nanotubereinforced composite plates in thermal environments", Comput. Mater. Continua., 18(2), 155-182.
- Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C. and Gao, H. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites", J. Eng. Mater. Technol., 126(3), 250-257. https://doi.org/10.1115/1.1751182
- Shu, C. and Wang, C. (1999), "Treatment of mixed and nonuniform boundary conditions in GDQ vibration analysis of rectangular plates", Eng. Struct., 21(2), 125-134. https://doi.org/10.1016/S0141-0296(97)00155-7
- Sobhani Aragh, B., Hedayati, H., Borzabadi Farahani, E. and Hedayati, M. (2011), "A novel 2-D sixparameter power-law distribution for free vibration and vibrational displacements of two-dimensional functionally graded fiber-reinforced curved panels", Eur. J. Mech. A/Solids, 30(6), 865-883. https://doi.org/10.1016/j.euromechsol.2011.05.002
- Tahouneh, V. (2014a), "Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations", Struct. Eng. Mech., Int. J., 50(6), 773-796. https://doi.org/10.12989/sem.2014.50.6.773
- Tahouneh, V. (2014b), "Free vibration analysis of bidirectional functionally graded annular plates resting on elastic foundations using differential quadrature method", Struct. Eng. Mech., Int. J., 52(4), 663-686. https://doi.org/10.12989/sem.2014.52.4.663
- Tahouneh, V. and Naei, M.H. (2014), "A novel 2-D six-parameter power-law distribution for threedimensional dynamic analysis of thick multi-directional functionally graded rectangular plates resting on a two-parameter elastic foundation", Meccanica, 49(1), 91-109. https://doi.org/10.1007/s11012-013-9776-x
- Tahouneh, V. and Naei, M.H. (2015a), "3D free vibration analysis of elastically supported thick nanocomposite curved panels with finite length and different boundary conditions via 2-D GDQ method", Mech. Adv. Mater. Struct., 1-80. DOI: 10.1080/15376494.2015.1068402
- Tahouneh, V. and Naei, M.H. (2015b), "Free vibration and vibrational displacements analysis of thick elastically supported laminated curved panels with power-law distribution functionally graded layers and finite length via 2D GDQ method", J. Sandw. Struct. Mater., 1-31. DOI: 10.1177/1099636215600709
- Tahouneh, V. and Yas, M.H. (2012), "3-D free vibration analysis of thick functionally graded annular sector plates on Pasternak elastic foundation via 2-D differential quadrature method", Acta Mech., 223(9), 1879-1897. https://doi.org/10.1007/s00707-012-0648-6
- Tahouneh, V. and Yas, M.H. (2013), "Semianalytical solution for three-dimensional vibration analysis of thick multidirectional functionally graded annular sector plates under various boundary conditions", J. Eng. Mech., 140(1), 31-46.
- Tahouneh, V. and Yas, M.H. (2014), "Influence of equivalent continuum model based on the Eshelby-Mori-Tanaka scheme on the vibrational response of elastically supported thick continuously graded carbon nanotube-reinforced annular plates", Polym. Composite, 35(8), 1644-1661. https://doi.org/10.1002/pc.22818
- Tahouneh, V., Yas, M.H., Tourang, H. and Kabirian, M. (2013), "Semi-analytical solution for threedimensional vibration of thick continuous grading fiber reinforced (CGFR) annular plates on Pasternak elastic foundations with arbitrary boundary conditions on their circular edges", Meccanica, 48(6), 1313-1336. https://doi.org/10.1007/s11012-012-9669-4
- Thostenson, E.T., Ren, Z.F. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites", A Review; Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X
- Valter, B., Ram, M.K. and Nicolini, C. (2002), "Synthesis of multiwalled carbon nanotubes and poly (oanisidine) nanocomposite material: Fabrication and characterization of its Langmuir-Schaefer films", Langmuir, 18(5), 1535-1541. https://doi.org/10.1021/la0104673
- Vel, S.S. (2010), "Exact elasticity solution for the vibration of functionally graded anisotropic cylindrical shells", Compos. Struct., 92(11), 2712-2727. https://doi.org/10.1016/j.compstruct.2010.03.012
- Vel, S.S. and Batra, R. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound. Vib., 272(3), 703-730. https://doi.org/10.1016/S0022-460X(03)00412-7
- Wang, Z.X. and Shen, H.S. (2011), "Nonlinear vibration of nanotube-reinforced composite plates in thermal environments", Comp. Mater. Sci., 50(8), 2319-2330. https://doi.org/10.1016/j.commatsci.2011.03.005
- Wang, C.M., Kitipornchai, S. and Xiang, Y. (1997), "Relationships between buckling loads of Kirchhoff, Mindlin, and Reddy polygonal plates on Pasternak foundation", J. Eng. Mech. ASCE, 123(11), 1134-1137. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:11(1134)
- Wernik, J. and Meguid, S. (2011), "Multiscale modeling of the nonlinear response of nano-reinforced polymers", Acta Mech., 217(1-2), 1-16. https://doi.org/10.1007/s00707-010-0377-7
- Xiang, Y., Wang, C.M. and Kitipornchai, S. (1994), "Exact vibration solution for initially stressed Mindlin plates on Pasternak foundations", Int. J. Mech. Sci., 36(4), 311-316. https://doi.org/10.1016/0020-7403(94)90037-X
- Xiang, Y., Kitipornchai, S. and Liew, K.M. (1996), "Buckling and vibration of thick laminates on Pasternak foundations", J. Eng. Mech. ASCE, 122(1), 54-63. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:1(54)
- Yas, M.H. and Sobhani Aragh, B. (2010), "Three-dimensional analysis for thermoelastic response of functionally graded fiber reinforced cylindrical panel", Compos. Struct., 92(10), 2391-2399. https://doi.org/10.1016/j.compstruct.2010.03.008
- Yas, M.H. and Tahouneh, V. (2012), "3-D free vibration analysis of thick functionally graded annular plates on Pasternak elastic foundation via differential quadrature method (DQM)", Acta Mech., 223(1), 43-62. https://doi.org/10.1007/s00707-011-0543-6
- Yokozeki, T., Iwahori, Y. and Ishiwata, S. (2007), "Matrix cracking behaviors in carbon fiber/epoxy laminates filled with cup-stacked carbon nanotubes (CSCNTs)", Composites Part A: Applied Science and Manufacturing, 38(3), 917-924. https://doi.org/10.1016/j.compositesa.2006.07.005
- Zhou, D., Cheung, Y.K., Lo, S.H. and Au, F.T.K. (2004), "Three-dimensional vibration analysis of rectangular thick plates on Pasternak foundation", Int. J. Numer. Method. Eng., 59(10), 1313-1334. https://doi.org/10.1002/nme.915
Cited by
- Three-dimensional vibration of a ring with a noncircular cross-section on an elastic foundation 2017, https://doi.org/10.1177/0954406217720823
- Nonlinear free and forced vibration analysis of FG-CNTRC annular sector plates pp.02728397, 2019, https://doi.org/10.1002/pc.24998
- Vibration and Mode Shape Analysis of Functionally Graded Nanocomposite Plates Reinforced by Aggregated Carbon Nanotube vol.378, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/378/1/012011
- Vibrational analysis of sandwich sectorial plates with functionally graded sheets reinforced by aggregated carbon nanotube pp.1530-7972, 2020, https://doi.org/10.1177/1099636218785972
- Free vibration analysis of elastically restrained functionally graded curved beams based on the Mori–Tanaka scheme pp.1537-6532, 2019, https://doi.org/10.1080/15376494.2018.1452318
- Comparison of nonlinear Von Karman and Cosserat theories in very large deformation of skew plates vol.10, pp.1, 2018, https://doi.org/10.1007/s40091-018-0184-2
- Using modified Halpin-Tsai approach for vibrational analysis of thick functionally graded multi-walled carbon nanotube plates vol.23, pp.6, 2016, https://doi.org/10.12989/scs.2017.23.6.657
- Comparison of different cylindrical shell theories for stability of nanocomposite piezoelectric separators containing rotating fluid considering structural damping vol.23, pp.6, 2016, https://doi.org/10.12989/scs.2017.23.6.691
- The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates vol.24, pp.6, 2016, https://doi.org/10.12989/scs.2017.24.6.711
- Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core vol.25, pp.3, 2017, https://doi.org/10.12989/scs.2017.25.3.347
- Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.649
- Vibration analysis of sandwich sectorial plates considering FG wavy CNT-reinforced face sheets vol.28, pp.5, 2016, https://doi.org/10.12989/scs.2018.28.5.541
- Vibration analysis of FG porous rectangular plates reinforced by graphene platelets vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.215
- Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate vol.35, pp.1, 2016, https://doi.org/10.12989/scs.2020.35.1.111
- Vibrational characteristic of FG porous conical shells using Donnell's shell theory vol.35, pp.2, 2016, https://doi.org/10.12989/scs.2020.35.2.249
- Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns vol.35, pp.2, 2016, https://doi.org/10.12989/scs.2020.35.2.295
- Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers vol.36, pp.1, 2020, https://doi.org/10.12989/scs.2020.36.1.001
- Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers vol.36, pp.1, 2016, https://doi.org/10.12989/scs.2020.36.1.047
- Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers vol.37, pp.6, 2016, https://doi.org/10.12989/scs.2020.37.6.711
- Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length vol.38, pp.5, 2016, https://doi.org/10.12989/scs.2021.38.5.477