DOI QR코드

DOI QR Code

Nonlinear analysis and design of concrete-filled dual steel tubular columns under axial loading

  • Wan, Cheng-Yong (Department of Civil and Environmental Engineering, Shenzhen Graduate School, Harbin Institute of Technology) ;
  • Zha, Xiao-Xiong (Department of Civil and Environmental Engineering, Shenzhen Graduate School, Harbin Institute of Technology)
  • Received : 2015.06.01
  • Accepted : 2015.11.18
  • Published : 2016.02.29

Abstract

A new unified design formula for calculating the composite compressive strength of the axially loaded circular concrete filled double steel tubular (CFDST) short and slender columns is presented in this paper. The formula is obtained from the analytic solution by using the limit equilibrium theory, the cylinder theory and the "Unified theory" under axial compression. Furthermore, the stability factor of CFDST slender columns is derived on the basis of the Perry-Robertson formula. This paper also reports the results of experiments and finite element analysis carried out on concrete filled double steel tubular columns, where the tested specimens include short and slender columns with different steel ratio and yield strength of inner tube; a new constitutive model for the concrete confined by both the outer and inner steel tube is proposed and incorporated in the finite element model developed. The comparisons among the finite element results, experimental results, and theoretical predictions show a good agreement in predicting the behavior and strength of the concrete filled steel tubular (CFST) columns with or without inner steel tubes. An important characteristic of the new formulas is that they provide a unified formulation for both the plain CFST and CFDST columns relating to the compressive strength or the stability bearing capacity and a set of design parameters.

Keywords

References

  1. ABAQUS standard user's manual (2008), The Abaqus Software is a product of Dassault Systemes Simulia Corp.; Dassault Systemes, Version 6.8, Providence, RI, USA.
  2. ACI (2002), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute; ACI-318-02, Detroit, MI, USA.
  3. Baltay, p. and Gjelsvik, A. (1990), "Coefficient of friction for steel on concrete at high normal stress", J. Mater. Civil Eng., ASCE, 2(1), 46-49. https://doi.org/10.1061/(ASCE)0899-1561(1990)2:1(46)
  4. Chang, X., Ru, Z.L., Zhou, W. and Zhang, Y.B. (2013), "Study on concrete-filled stainless steel-carbon steel tubular (CFSCT) stub columns under compression", Thin-Wall. Struct., 63, 125-133. https://doi.org/10.1016/j.tws.2012.10.002
  5. Chinese Standard (2014), Technical Code for Concrete Filled Steel Tubular Structures, China Building Industry Press; GB 50936-2014, Beijing, China. [In Chinese]
  6. Dai, X. and Lam, D. (2010), "Numerical modeling of the axial compressive behaviour of short concretefilled elliptical steel columns", J. Constr. Steel Res., 66(7), 931-942. https://doi.org/10.1016/j.jcsr.2010.02.003
  7. Ellobody, E. and Young, B. (2006), "Nonlinear analysis of concrete-filled steel SHS and RHS columns", Thin-Wall. Struct., 44(8), 919-930. https://doi.org/10.1016/j.tws.2006.07.005
  8. Espinos, A., Romero, M.L. and Hospitaler, A. (2010), "Advanced model for predicting the fire response of concrete filled tubular columns", J. Construct. Steel Res., 66(8-9), 1030-1046. https://doi.org/10.1016/j.jcsr.2010.03.002
  9. Eurocode 4 (2004), Design of composite steel and concrete structures. Part 1.1, General rules and rules for buildings; DD ENV 1994-1-1, British Standards Institution, London, UK.
  10. Han, L.H., Yao, G.H. and Tao, Z. (2007), "Performance of concrete-filled thin-walled steel tubes under pure torsion", Thin-Wall. Struct., 45(1), 24-36. https://doi.org/10.1016/j.tws.2007.01.008
  11. Han, L.H., Liu, W. and Yang, Y. (2008), "Behaviour of concrete-filled steel tubular stub columns subjected to axially local compression", J. Constr.l Steel Res., 64(4), 377-387. https://doi.org/10.1016/j.jcsr.2007.10.002
  12. Hassanein, M.F., Kharoob, O.F. and Liang, Q.Q. (2013), "Behaviour of circular concrete-filled lean duplex stainless steel-carbon steel tubular short columns", Eng. Struct., 56, 83-94. https://doi.org/10.1016/j.engstruct.2013.04.016
  13. Hu, H.T. and Su, F.C. (2011), "Nonlinear analysis of short concrete-filled double skin tube columns subjected to axial compressive forces", Mar. Struct., 24(4), 319-337. https://doi.org/10.1016/j.marstruc.2011.05.001
  14. Huang, H., Han, L.H., Tao, Z. and Zhao, X.L. (2010), "Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns", J. Constr. Steel Res., 66(4), 542-555. https://doi.org/10.1016/j.jcsr.2009.09.014
  15. Jiang, H., Zuo, J. and Cheng, W.R. (2008), "Experimental study of concrete-filled double steel tubular short columns subjected to axial compression load", Earthq. Resist. Eng. Retrof., 30(1), 28-35. [In Chinese]
  16. Li, W., Ren, Q.X., Han, L.H. and Zhao, X.L. (2012), "Behaviour of tapered concrete-filled double skin steel tubular (CFDST) stub columns", Thin-Wall. Struct., 57, 37-48. https://doi.org/10.1016/j.tws.2012.03.019
  17. Liang, Q.Q. (2009), "Performance-based analysis of concrete-filled steel tubular beam-columns. Part I: theory and algorithms", J. Constr. Steel Res., 65(2), 363-373. https://doi.org/10.1016/j.jcsr.2008.03.007
  18. Liew, J.Y.R. and Xiong, D.X. (2012), "Ultra-high strength concrete filled composite columns for multistorey building construction", Adv. Struct. Eng., 15(9), 1487-1504. https://doi.org/10.1260/1369-4332.15.9.1487
  19. Lin, M.L. and Tsai, K.C. (2001), "Behavior of double-skinned composite steel tubular columns subjected to combined axial and flexural loads", Proceedings of the First International Conference on Steel & Composite Structures, Busan, Korea, June.
  20. Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng.-ASCE, 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  21. Martinez, S., Nilson, H.N. and Slate, F.O. (1984), "Spirally reinforced high-strength concrete columns", ACI Struct. J., 81(5), 431-442.
  22. Peng, Y.Y., Tan, K.F. and Yao, Y. (2011), "Mechanical properties of duplex steel tubular high strength concrete short columns", J. Southwest Univ. Sci. Technol., 26(2), 105-109. [In Chinese]
  23. Richart, F.E., Brandzaeg, A. and Brown, R.L. (1928), "A study of the failure of concrete under combined compressive stresses", University of Illinois Engineering Experimental Station; Bull., 185, Champaign, IL, USA.
  24. Romero, M.L., Espinos, A., Portoles, J.M., Hospitaler, A. and Ibanez, C. (2015), "Slender double-tube ultrahigh strength concrete-filled tubular columns under ambient temperature and fire", Eng. Struct., 99(15), 536-545. https://doi.org/10.1016/j.engstruct.2015.05.026
  25. Saenz, L.P. (1964), "Discussion of paper by Desai P, Krishnan S. equation for stress-strain curve of concrete", J. Am. Concrete Inst., 61(7), 1229-1235.
  26. Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng.-ASCE, 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
  27. Wei, H., Wang, H.J., Hasegawa, A., Shioi, Y., Iwasaki, S. and Miyamoto, Y. (2005), "Study on strength of reinforced concrete filled circular steel tubular columns", Struct. Eng. Mech., Int. J., 19(6), 653-677. https://doi.org/10.12989/sem.2005.19.6.653
  28. Xiamuxi, A. and Hasegawa, A. (2012), "A study on axial compressive behaviors of reinforced concrete filled tubular steel columns", J. Constr. Steel Res., 76, 144-154. https://doi.org/10.1016/j.jcsr.2012.03.023
  29. Yagishita, F., Kitoh, H., Sugimoto, M., Tanihira, T. and Sonoda, K. (2000), "Double-skin composite tubular columns subjected cyclic horizontal force and constant axial force", Proceedings of the 6th ASCCS Conference, Los Angeles, CA, USA, March.
  30. Yu, M., Zha, X.X., Ye, J.Q. and Li, Y.T. (2013), "A unified formulation for circle and polygon concretefilled steel tube columns under axial compression", Eng. Struct., 49, 1-10. https://doi.org/10.1016/j.engstruct.2012.10.018
  31. Zhong, S.T. (2006), Concrete-filled Steel Tube United Theory-Research and Application, Tsinghua University Press, Beijing, China. [In Chinese]
  32. Гвоздев, А.А. (1949), Расчет несущей способности конструкций по методу предельного равновесия, Госстройиздат, Москва, Россия.

Cited by

  1. Behavior of steel-reinforced concrete-filled square steel tubular stub columns under axial loading vol.119, 2017, https://doi.org/10.1016/j.tws.2017.07.021
  2. Axial compressive behaviour of concrete-filled double-tube stub columns with stiffeners vol.120, 2017, https://doi.org/10.1016/j.tws.2017.08.025
  3. Ultra-high Strength Concrete on Eccentrically Loaded Slender Circular Concrete-filled Dual Steel Columns vol.12, 2017, https://doi.org/10.1016/j.istruc.2017.07.005
  4. Overall buckling behaviour of circular concrete-filled dual steel tubular columns with stainless steel external tubes vol.115, 2017, https://doi.org/10.1016/j.tws.2017.01.035
  5. Analysis of axially loaded concrete filled circular hollow double steel tubular columns exposed to fire vol.88, 2017, https://doi.org/10.1016/j.firesaf.2016.12.007
  6. An Optimized Approach for Tracing Pre- and Post-Buckling Equilibrium Paths of Space Trusses pp.1793-6764, 2018, https://doi.org/10.1142/S0219455419500408
  7. Experimental study and calculation of laterally-prestressed confined concrete columns vol.23, pp.5, 2017, https://doi.org/10.12989/scs.2017.23.5.517
  8. Fire resistance of high strength fiber reinforced concrete filled box columns vol.23, pp.5, 2017, https://doi.org/10.12989/scs.2017.23.5.611
  9. Evaluation of ductility and response modification factor in moment-resisting steel frames with CFT columns vol.12, pp.6, 2016, https://doi.org/10.12989/eas.2017.12.6.643
  10. Behavior of concrete-filled round-ended steel tubes under bending vol.25, pp.4, 2016, https://doi.org/10.12989/scs.2017.25.4.457
  11. A dual approach to perform geometrically nonlinear analysis of plane truss structures vol.27, pp.1, 2018, https://doi.org/10.12989/scs.2018.27.1.013
  12. Fire resistance of high strength concrete filled steel tubular columns under combined temperature and loading vol.27, pp.2, 2016, https://doi.org/10.12989/scs.2018.27.2.243
  13. Behavior of polygonal concrete-filled steel tubular stub columns under axial loading vol.28, pp.5, 2016, https://doi.org/10.12989/scs.2018.28.5.573
  14. Evaluation of moment amplification factors for RCMRFs designed based on Iranian national building code vol.9, pp.1, 2016, https://doi.org/10.12989/acc.2020.9.1.023
  15. The effect of active and passive confining pressure on compressive behavior of STCC and CFST vol.9, pp.2, 2016, https://doi.org/10.12989/acc.2020.9.2.161
  16. RETRACTED ARTICLE: Repair of Buckled Concrete Filled Steel Tube Columns Subjected to Axial Compression vol.24, pp.5, 2016, https://doi.org/10.1007/s12205-020-0321-x
  17. Behavior of circular concrete-filled double steel tubular slender beam-columns including preload effects vol.220, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2020.111010
  18. Compressive behavior of steel-reinforced concrete-filled circular steel tubular stub columns vol.28, pp.None, 2016, https://doi.org/10.1016/j.istruc.2020.08.012
  19. Stress-strain state of concrete filled steel tubular columns of annular cross-section taking into account physical nonlinearity vol.281, pp.None, 2021, https://doi.org/10.1051/e3sconf/202128101007
  20. Investigation on the lateral impact responses of circular concrete-filled double-tube (CFDT) members vol.255, pp.None, 2016, https://doi.org/10.1016/j.compstruct.2020.112993
  21. Behaviour of slender concrete-filled dual steel tubular columns subjected to eccentric loads vol.176, pp.None, 2016, https://doi.org/10.1016/j.jcsr.2020.106365
  22. Mechanical behavior of outer square inner circular concrete-filled dual steel tubular stub columns vol.38, pp.3, 2016, https://doi.org/10.12989/scs.2021.38.3.305
  23. Component based moment-rotation model of composite beam blind bolted to CFDST column joint vol.38, pp.5, 2021, https://doi.org/10.12989/scs.2021.38.5.547
  24. Compressive strength of circular concrete filled steel tubular stubs strengthened with CFRP vol.39, pp.2, 2016, https://doi.org/10.12989/scs.2021.39.2.189
  25. Study and design of assembled CFDST column-beam connections considering column wall failure vol.39, pp.2, 2016, https://doi.org/10.12989/scs.2021.39.2.201
  26. Experimental and numerical investigations of square concrete-filled double steel tubular stub columns vol.24, pp.11, 2016, https://doi.org/10.1177/13694332211004111
  27. A new procedure for post-buckling analysis of plane trusses using genetic algorithm vol.40, pp.6, 2016, https://doi.org/10.12989/scs.2021.40.6.817
  28. Numerical Investigation of Composite Behavior and Strength of Rectangular Concrete-Filled Cold-Formed Steel Tubular Stub Columns vol.14, pp.20, 2016, https://doi.org/10.3390/ma14206221
  29. CALCULATION OF CENTRALLY COMPRESSED CONCRETE FILLED STEEL TUBULAR COLUMNS OF ANNULAR SECTION TAKING INTO ACCOUNT PHYSICAL NONLINEARITY vol.9, pp.3, 2021, https://doi.org/10.29039/2308-0191-2021-9-3-6-10
  30. Behaviour of CFST slender columns strengthened with steel tube and sandwiched concrete jackets under axial loading vol.45, pp.None, 2016, https://doi.org/10.1016/j.jobe.2021.103613
  31. Flexural strength and stiffness of circular double-skin and double-tube concrete-filled steel tubes vol.81, pp.None, 2016, https://doi.org/10.1016/j.marstruc.2021.103126
  32. Axial compressive behavior of circular concrete-filled double steel tubular short columns vol.25, pp.2, 2016, https://doi.org/10.1177/13694332211046345