Acknowledgement
Supported by : University of Kashan
References
- Arefi, M. (2015a), "Nonlinear electromechanical stability of a functionally graded circular plate integrated with functionally graded piezoelectric layers", Latin Am. J. Solids Struct., 12(9), 1653-1665. https://doi.org/10.1590/1679-78251449
- Arefi, M. (2015b), "Nonlinear electromechanical analysis of a functionally graded square plate integrated with smart layers resting on Winkler-Pasternak foundation", Smart Struct. Syst., Int. J., 16(1), 195-211. https://doi.org/10.12989/sss.2015.16.1.195
- Arefi, M. and Allam, M.N.M. (2015), "Nonlinear responses of an arbitrary FGP circular plate resting on the Winkler-Pasternak foundation", Smart Struct. Syst., Int. J., 16(1), 81-100. https://doi.org/10.12989/sss.2015.16.1.081
- Arefi, M. and Rahimi, G.H. (2011), "Nonlinear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart Struct. Syst., Int. J., 8(5), 433-446. https://doi.org/10.12989/sss.2011.8.5.433
- Askari Farsangi, M.A. and Saidi, A.R. (2013), "Levy type solution for free vibration analysis of functionally graded rectangular plates with piezoelectric layers", Smart. Mater. Struct., 21(9), 1-15.
- Bodaghi, M. and Saidi, A.R. (2011), "Buckling behavior of standing laminated Mindlin plates subjected to body force and vertical loading", Compos. Struct., 93(2), 538-547. https://doi.org/10.1016/j.compstruct.2010.08.026
- Bodaghi, M. and Saidi, A.R. (2012), "Buckling analysis of functionally graded Mindlin plates subjected to linearly varying in-plane loading using power series method of Frobenius", Int. J. Eng. Transactions: A, 25(1), 89-106.
- Brunelle, E.J. (1971), "Buckling of transversely isotropic Mindlin plates", AIAA J., 9(6), 1018-1022. https://doi.org/10.2514/3.6326
- Brunelle, E.J. and Robertson, S.R. (1974), "Initially stressed Mindlin plates", AIAA J., 12(8), 1036-1045. https://doi.org/10.2514/3.49407
- Chen, W.C. and Liu, W.H. (1993), "Thermal buckling of antisymmetric angle-ply laminated plates-an analytical Levy-type solution", Therm. Stress., 16(4), 401-419. https://doi.org/10.1080/01495739308946237
- Dozio, L. (2013), "Natural frequencies of sandwich plates with FGM core via variable-kinematic 2-D Ritz models", Compos. Struct., 96, 561-568. https://doi.org/10.1016/j.compstruct.2012.08.016
- Ghorbanpour Arani, A., Hashemian, M., Loghman, A., Mohammadimeihr, M. (2011), "Study of dynamic stability of the double-walled carbon nanotube under axial loading embedded in an elastic medium by the energy method", J. Appl. Mech. Technical Phys., 52 (5), 815-824. https://doi.org/10.1134/S0021894411050178
- Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
- Hasani Baferani, A., Saidi, A.R. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020
- Hosseini Hashemi, Sh., Es'haghi, M. and Karimi, M. (2010), "Closed-form solution for free vibration of piezoelectric coupled annular plates using Levinson plate theory", J. Sound Vib., 329(9), 1390-1408. https://doi.org/10.1016/j.jsv.2009.10.043
- Jabbari, M., Farzaneh Joubaneh, E. and Mojahedin, A. (2014), "Thermal buckling analysis of porous circularplate with piezoelectric actuators based onfirst order shear deformation theory", Int. J. Mech. Sciences, 83, 57-64. https://doi.org/10.1016/j.ijmecsci.2014.03.024
- Kang, J.H. and Leissa, A.W. (2005), "Exact solutions for the buckling of rectangular plates having linearly varying in-plane loading on two opposite simply supported edges", Int. J. Solids Struct., 42(14), 4220-4238. https://doi.org/10.1016/j.ijsolstr.2004.12.011
- Kashtalyan, M. and Menshykova, M. (2009), "Three-dimensional elasticity solution for sandwich panels with a functionally graded core", Compos. Struct., 87(1), 36-43. https://doi.org/10.1016/j.compstruct.2007.12.003
- Kim, J. and Reddy, J.N. (2013), "Analytical solutions for bending, vibration, and buckling of FGM platesusing a couple stress-based third-order theory", Compos. Struct., 103, 86-8. https://doi.org/10.1016/j.compstruct.2013.03.007
- Ma, L.S. and Wang, T.J. (2004), "Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory", Int. J. Solids Struct., 41(1), 85-101. https://doi.org/10.1016/j.ijsolstr.2003.09.008
- Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates", J. Appl. Mech., Trans. ASME, 18, 31-38.
- Mohammadimehr, M., Saidi, A.R., Ghorbanpour Arani, A., Arefmanesh, A. and Han, Q. (2010), "Torsional buckling of a DWCNT embedded on Winkler and Pasternak foundation using nonlocal theory", 24(6), 1289-1299. https://doi.org/10.1007/s12206-010-0331-6
- Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015), "Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of double-coupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT", Compos. Part B: Eng., 87, 132-148. DOI: 10.1016/j.compositesb.2015.10.007
- Najafizadeh, M.M. and Heydari, H.R. (2004), "Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory", Eur. J. Mech. A/Solid, 23(6), 1085-1100. https://doi.org/10.1016/j.euromechsol.2004.08.004
- Najafizadeh, M.M. and Heydari, H.R. (2008), "An exact solution for buckling of functionally graded circular plates based on higher order shear deformation plate theory under uniform radial compression", Int. J. Mech. Sci., 50(3), 603-612. https://doi.org/10.1016/j.ijmecsci.2007.07.010
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", J. Compos. Part B, 44(1), 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089
- Nguyen, K.T., Thai, T.H. and Vo, T.P. (2015), "A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 91-120. https://doi.org/10.12989/scs.2015.18.1.091
- Nosier, A. and Reddy, J.N. (1992), "On vibration and buckling of symmetric laminated plates according to shear deformation theories", Acta. Mech., 94(3), 145-169. https://doi.org/10.1007/BF01176648
- Oktem, A.S. and Chaudhuri, R.A. (2007), "Levy type analysis of cross-ply plates based on higher-order theory", Compos. Struct., 78(2), 243-253. https://doi.org/10.1016/j.compstruct.2005.09.012
- Palardy, R.F. and Palazotto, A.N. (1990), "Buckling and vibration of composite plates using the levy method", Compos. Struct., 14(1), 61-86. https://doi.org/10.1016/0263-8223(90)90059-N
- Reddy, J.N. (1984), Energy and Variational Methods in Applied Mechanics, John Wily and Sons.
- Reddy, J.N. (1990), "A review of refined theories of laminated composite plates", Shock. Vib. Digest., 22(7), 3-17. https://doi.org/10.1177/058310249002200703
- Rouzegar, J. and Abad, F. (2015), "Free vibration analysis of FG plate with piezoelectric layers using fourvariable refined plate theory", Thin-Wall. Struct., 89, 76-83. https://doi.org/10.1016/j.tws.2014.12.010
- Samsam Shariat, B.A. and Eslami, M.R. (2007), "Buckling of thick functionally graded plates under mechanical and thermal loads", Compos. Struct., 78(3), 433-439. https://doi.org/10.1016/j.compstruct.2005.11.001
- Shen, H.S. and Li, S.R. (2008), "Postbuckling of sandwich plates with FGM face sheets and temperaturedependent properties", Compos. Struct. Part B, 39(2), 332-344. https://doi.org/10.1016/j.compositesb.2007.01.004
- Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates restingon elastic foundations under various boundary conditions", Compos. Struct., 99, 76-7. https://doi.org/10.1016/j.compstruct.2012.11.018
- Sobhy, M. and Zenkour, A.M. (2015), "Thermodynamical bending of FGM sandwich plates resting on Pasternak's elastic foundations", Adv. Appl. Math. Mech., 7(1), 116-134. https://doi.org/10.4208/aamm.2013.m143
- Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech. A Solids, 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008
- Whitney, J.M. (1987), Structural Analysis of Laminated Anisotropic Plates, Thechnomic, Lancaster, PA, USA.
- Yang, B., Chen, W.Q. and Ding, H.J. (2014), "3D elasticity solutions for equilibrium problems of transversely isotropic FGM plates with holes", Acta. Mechanica., 226(5), 1571-1590. https://doi.org/10.1007/s00707-014-1270-6
- Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int. J. Solids Struct., 42(18-19), 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016
- Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93(1), 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012
- Zenkour, A.M. and Sobhy, M. (2012), "Elastic foundation analysis of uniformly loaded functionally graded viscoelastic sandwich plates", J. Mecha., 28(3), 439-452. https://doi.org/10.1017/jmech.2012.53
Cited by
- Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM vol.21, pp.1, 2016, https://doi.org/10.12989/scs.2016.21.1.001
- Thermo-electro-mechanical bending behavior of sandwich nanoplate integrated with piezoelectric face-sheets based on trigonometric plate theory vol.162, 2017, https://doi.org/10.1016/j.compstruct.2016.11.071
- Thermo-electro-magneto-mechanical bending behavior of size-dependent sandwich piezomagnetic nanoplates vol.84, 2017, https://doi.org/10.1016/j.mechrescom.2017.06.002
- Size-dependent free vibration analysis of three-layered exponentially graded nanoplate with piezomagnetic face-sheets resting on Pasternak’s foundation 2017, https://doi.org/10.1177/1045389X17721039
- Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-mechanical loadings 2017, https://doi.org/10.1177/1077546317706887
- Bending and vibration analyses of a rotating sandwich cylindrical shell considering nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields vol.39, pp.2, 2018, https://doi.org/10.1007/s10483-018-2301-6
- Dynamic response with mass variation of laminated composite twisted plates vol.32, pp.9, 2018, https://doi.org/10.1007/s12206-018-0812-6
- Vibration control of the rotating sandwich cylindrical shell considering functionally graded core and functionally graded magneto-electro-elastic layers by using differential quadrature method pp.1530-7972, 2021, https://doi.org/10.1177/1099636218824139
- Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock vol.25, pp.2, 2017, https://doi.org/10.12989/scs.2017.25.2.187
- Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields vol.64, pp.3, 2016, https://doi.org/10.12989/sem.2017.64.3.361
- A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
- Vibration analysis of thick orthotropic plates using quasi 3D sinusoidal shear deformation theory vol.16, pp.2, 2016, https://doi.org/10.12989/gae.2018.16.2.141
- Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions vol.28, pp.2, 2018, https://doi.org/10.12989/scs.2018.28.2.149
- Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite vol.29, pp.3, 2018, https://doi.org/10.12989/scs.2018.29.3.405
- Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method vol.7, pp.2, 2016, https://doi.org/10.12989/anr.2019.7.2.109
- Free vibration of Cooper-Naghdi micro saturated porous sandwich cylindrical shells with reinforced CNT face sheets under magneto-hydro-thermo-mechanical loadings vol.70, pp.3, 2016, https://doi.org/10.12989/sem.2019.70.3.351
- Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach vol.23, pp.5, 2019, https://doi.org/10.12989/cac.2019.23.5.361
- Thermo-electrical buckling response of actuated functionally graded piezoelectric nanoscale plates vol.13, pp.None, 2016, https://doi.org/10.1016/j.rinp.2019.102192
- Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation vol.70, pp.6, 2016, https://doi.org/10.12989/sem.2019.70.6.683
- Hydro-thermo-mechanical biaxial buckling analysis of sandwich micro-plate with isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets based on FSDT on elastic foundations vol.33, pp.4, 2016, https://doi.org/10.12989/scs.2019.33.4.509
- Analysis of sandwich Timoshenko porous beam with temperature-dependent material properties: Magneto-electro-elastic vibration and buckling solution vol.25, pp.23, 2016, https://doi.org/10.1177/1077546319860314
- Effects of couple stresses on the in-plane vibration of micro-rotating disks vol.26, pp.13, 2016, https://doi.org/10.1177/1077546319892426
- Nonlinear forced vibration of sandwich plate with considering FG core and CNTs reinforced nano-composite face sheets vol.26, pp.2, 2016, https://doi.org/10.12989/sss.2020.26.2.185
- Vibration analysis of rotating fully-bonded and delaminated sandwich beam with CNTRC face sheets and AL-foam flexible core in thermal and moisture environments vol.48, pp.5, 2016, https://doi.org/10.1080/15397734.2019.1646661
- Free vibration of electro-magneto-thermo sandwich Timoshenko beam made of porous core and GPLRC vol.10, pp.2, 2016, https://doi.org/10.12989/anr.2021.10.2.115
- Free Vibration Analysis of Cylindrical Micro/Nano-Shell Reinforced with CNTRC Patches vol.13, pp.4, 2016, https://doi.org/10.1142/s175882512150040x
- Vibration control of sandwich plate-reinforced nanocomposite face sheet and porous core integrated with sensor and actuator layers using perturbation method vol.27, pp.15, 2021, https://doi.org/10.1177/1077546320948330
- Dynamic stability and bifurcation analysis of sandwich plate with considering FG core and FG-CNTRC face sheets vol.23, pp.6, 2021, https://doi.org/10.1177/1099636220909766
- Radial vibration analysis for functionally graded ring piezoelectric transducers based on electromechanical equivalent circuit method vol.120, pp.None, 2022, https://doi.org/10.1016/j.ultras.2021.106640