Evaluation of Peak Overpressure and Impulse Induced by Explosion

폭발에 따른 최대과압 및 충격량 평가

  • Received : 2016.12.23
  • Accepted : 2016.12.27
  • Published : 2016.12.30

Abstract

Empirical model, phenomenological model, and CFD model have been used to evaluate the blast effects produced by explosion of explosives, flammable gas and liquid or dust. TNT equivalence method which is one of empirical models has been widely used as it is simple. In this study, new peak overpressure-scaled distance and scaled impulse-scaled distance equations are induced through fitting data from the curves given by TNT equivalence method. If the TNT equivalent mass is calculated, it is possible to estimate the peak overpressure and impulse using the regression equations. Differences of peak overpressure with yield factor which is a component of TNT equivalence method are found to be great in near-by distances from explosion source where the increase in overpressure is very steep, but the differences are getting smaller as the distances increase.

화약류, 인화성 액체와 가스 또는 먼지 등의 폭발에 의해 유발된 폭발효과를 평가하는데 경험적모델, 현상학적모델 및 전산유체역학모델이 사용된다. 경험적모델의 한 종류인 TNT등가법은 사용이 매우 단순하기 때문에 현재까지도 널리 사용되고 있다. 본 연구에서는 TNT 폭발 실험으로부터 얻어진 최대과압-환산거리 곡선과 환산충격량-환산거리 곡선을 피팅하여 새로운 회귀식을 유도하였다. 폭발성 물질의 TNT 등가질량만 알면 본 연구에서 유도한 회귀식을 이용하여 거리에 따른 최대과압과 충격량을 평가하는 것이 가능하다. TNT등가법의 한 성분인 수율계수의 크기를 달리하여 최대과압을 구한 결과 압력의 증가가 급격히 나타나는 폭원으로부터 근접한 거리에서는 수율계수에 따라 최대과압의 차가 크게 발생하는 반면에 거리가 증가함에 따라 그 차이는 감소하는 것으로 나타났다.

Keywords

References

  1. 소방방재청, 2011, 소방방재 주요통계 및 자료, 소방방재청, 294p.
  2. Alonso, F.D., E.G. Ferradas, J.F.S. Perez, A.M. Aznar, J.R. Gimeno and J.M. Alonso, 2006, Characteristic overpressure-impulse-distance curves for the detonation of explosives, pyrotechnics or unstable substances, J. of Loss Prevention in the Process Industries, Vol. 19, pp. 724-728. https://doi.org/10.1016/j.jlp.2006.06.001
  3. Assael, M.J. and K.E. Kakosimos, 2010, Fires, explosions, and toxic gas dispersions, CRC Press, 333p.
  4. Chock, J.M.K., 1999, Review of methods for calculating pressure profiles of explosive air blast and its sample application, Thesis of Master Degree, Virginia Polytechnic Institute and State University, 126p.
  5. Eckhoff, R.K., 2016, Explosion Hazards in the Process Industries, Elsevier Inc., 559p.
  6. Formby, S.A. and R.K. Wharton, 1996, Blast characteristics and TNT equivalence values for some commercial explosives detonated at round level, J. of Hazardous Materials, Vol. 50, pp. 183-198. https://doi.org/10.1016/0304-3894(96)01791-8
  7. http://en.wikipedia.org, New London School Explosion.
  8. http://navercast.naver.com, 77년 이리 화약열차 폭발사고 취재기; 다이나마이트에 촛불을?
  9. http//:www.un.org, Kingery-Bulmash Blast Parameter Calculator.
  10. Karlos, V. and G. Solomos, 2013, Calculation of Blast Loads for Application to Structural Components, JRC Technical Reports, 50p.
  11. Lea, C.J., 2002, A review of the state-of-the-art in gas explosion modelling, Health & Safety Laboratory, 82p.
  12. Lenoble, C. and C. Durand, 2011, Introduction of frequency in France following the AZF accident, J. of Loss Prevention in the Process Industries, Vol. 24, pp. 227-236. https://doi.org/10.1016/j.jlp.2010.09.003
  13. Lobato, J., J.F. Rodriguez, C. Jimenez, J. Llanos, A. Nieto-Marquez and A.M. Inarejos, 2009, Consequence analysis of an explosion by simple models: Texas refinery gasoline explosion case, AFINIDAD, Vol. 66, No. 543, pp. 372-379.
  14. UNODA, 2015, Formulae for ammunition management, IATG 01.80:2015[E], 19p.