References
- P. M. Thompson, K. M. Hayashi, R. A. Dutton, M. C. Chiang, A. D. Leow, E. R. Sowell, G. De Zubicaray, J. T. Becker, O. L. Lopez, H. J. Aizenstein, et al., "Tracking Alzheimer's disease. Annals of the New York Academy of Sciences, vol. 1097, no. 1, pp. 183-214, 2007. https://doi.org/10.1196/annals.1379.017
- O. L. Lopez, J. T. Becker, C. A. Jungreis, D. Rezek, C. Estol, F. Boiler, and S. T. DeKosky, "Computed tomography-but not magnetic resonance imaging-identified periventricular white-matter lesions predict symptomatic cerebrovascular disease in probable Alzheimer's disease," Archives of Neurology, vol. 52, no. 7, pp. 659-664, 1995. https://doi.org/10.1001/archneur.1995.00540310029012
- K. A. Jobst, L. P. Barnetson, and B. J. Shepstone, "Accurate prediction of histologically confirmed Alzheimer's disease and the differential diagnosis of dementia: the use of NINCDS-ADRDA and DSM-III-R criteria, SPECT, X-ray CT, and Apo E4 in medial temporal lobe dementias," International Psychogeriatrics, vol. 10, no. 3, pp. 271-302, 1998. https://doi.org/10.1017/S1041610298005389
- J. Ramirez, J. M. Gorriz, M. Lopez, D. Salas-Gonzalez, I. Alvarez, F. Segovia, and C. G. Puntonet, "Early detection of the alzheimer disease combining feature selection and kernel machines," In International Conference on Neural Information Processing, Heidelberg: Springer, 2008, pp. 410-417.
- M. Lopez, J. Ramirez, J. M. Gorriz, I. Alvarez, D. Salas-Gonzalez, F. Segovia, R. Chaves, P. Padilla, and M. Gomez-Rio, "Principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimer's disease," Neurocomputing, vol. 74, no. 8, pp. 1260-1271, 2011. https://doi.org/10.1016/j.neucom.2010.06.025
- S. Kloppel, C. M. Stonnington, C. Chu, B. Draganski, R. I. Scahill, J. D. Rohrer, N. C. Fox, C. R. Jack, J. Ashburner, and R. S. Frackowiak, "Automatic classification of MR scans in Alzheimer's disease," Brain, vol. 131, no. 3, pp. 681-689, 2008. https://doi.org/10.1093/brain/awm319
- C. Davatzikos, Y. Fan, X. Wu, D. Shen, and S. M. Resnick, "Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging," Neurobiology of Aging, vol. 29, no. 4, pp. 514-523, 2008. https://doi.org/10.1016/j.neurobiolaging.2006.11.010
- C. R. Jack, R. C. Petersen, Y. C. Xu, P. C. O'Brien, G. E. Smith, R. J. Ivnik, B. F. Boeve, S. C. Waring, E. G. Tangalos, and E. Kokmen, "Prediction of AD with MRIbased hippocampal volume in mild cognitive impairment," Neurology, vol. 52, no. 7, pp. 1397-1397, 1999. https://doi.org/10.1212/WNL.52.7.1397
- R. J. Killiany, B. T. Hyman, T. A. Gomez-Isla, M. B. Moss, R. Kikinis, F. Jolesz, R. Tanzi, K. Jones, and M. S. Albert, "MRI measures of entorhinal cortex vs hippocampus in preclinical AD," Neurology, vol. 58, no. 8, pp. 1188-1196, 2002. https://doi.org/10.1212/WNL.58.8.1188
- G. B. Frisoni, M. P. Laakso, A. Beltramello, C. Geroldi, A. Bianchetti, H. Soininen, and M. Trabucchi, "Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer's disease," Neurology, vol. 52, no. 1, pp. 91-91, 1999. https://doi.org/10.1212/WNL.52.1.91
- Z. Lao, D. Shen, Z. Xue, B. Karacali, S.M. Resnick and C. Davatzikos, "Morphological classification of brains via highdimensional shape transformations and machine learning methods," NeuroImage, vol. 21, no. 1, pp. 46-57, 2004. https://doi.org/10.1016/j.neuroimage.2003.09.027
- M. Chupin, E. Gerardin, R. Cuingnet, C. Boutet, L. Lemieux, S. Lehericy, H. Benali, L. Garnero, and O. Colliot, "Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI," Hippocampus, vol. 19, no. 6, pp. 579-587, 2009. https://doi.org/10.1002/hipo.20626
- J. Ashburner and K. J. Friston, "Voxel-based morphometry: the methods," Neuroimage, vol. 11, no. 6, pp. 805-821, 2000. https://doi.org/10.1006/nimg.2000.0582
- B. S. Mahanand, S. Suresh, N. Sundararajan, and M. A. Kumar, "Alzheimer's disease detection using a self-adaptive resource allocation network classifier," in Proceedings of the 2011 International Joint Conference on Neural Networks (IJCNN), San Jose, CA, 2011, pp. 1930-1934.
- D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris, and R. L. Buckner, "Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults," Journal of Cognitive Neuroscience, vol. 19, no. 9, pp. 1498-1507, 2007. https://doi.org/10.1162/jocn.2007.19.9.1498
- S. Saraswathi, S. Sundaram, N. Sundararajan, M. Zimmermann, and M. Nilsen-Hamilton, "ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 8, no. 2, 452-463, 2011. https://doi.org/10.1109/TCBB.2010.13
- V. Sachnev, S. Saraswathi, R. Niaz, A. Kloczkowski, and S. Suresh, "Multi-class BCGA-ELM based classifier that identifies biomarkers associated with hallmarks of cancer," BMC Bioinformatics, vol. 16, article no. 166, 2015.
- S. Suresh, S. N. Omkar, V. Mani, and T. G. Prakash, "Lift coefficient prediction at high angle of attack using recurrent neural network," Aerospace Science and Technology, vol. 7, no. 8, pp. 595-602, 2003. https://doi.org/10.1016/S1270-9638(03)00053-1
- G. B. Huang, Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: theory and applications," Neurocomputing, vol. 70, no. 1, pp. 489-501, 2006. https://doi.org/10.1016/j.neucom.2005.12.126