DOI QR코드

DOI QR Code

An Improved Sample Balanced Genetic Algorithm and Extreme Learning Machine for Accurate Alzheimer Disease Diagnosis

  • Sachnev, Vasily (School of Information, Communication and Electronics Engineering, The Catholic University of Korea) ;
  • Suresh, Sundaram (School of Computer Engineering, Nanyang Technological University)
  • Received : 2016.11.08
  • Accepted : 2016.12.06
  • Published : 2016.12.30

Abstract

An improved sample balanced genetic algorithm and Extreme Learning Machine (iSBGA-ELM) was designed for accurate diagnosis of Alzheimer disease (AD) and identification of biomarkers associated with AD in this paper. The proposed AD diagnosis approach uses a set of magnetic resonance imaging scans in Open Access Series of Imaging Studies (OASIS) public database to build an efficient AD classifier. The approach contains two steps: "voxels selection" based on an iSBGA and "AD classification" based on the ELM. In the first step, the proposed iSBGA searches for a robust subset of voxels with promising properties for further AD diagnosis. The robust subset of voxels chosen by iSBGA is then used to build an AD classifier based on the ELM. A robust subset of voxels keeps a high generalization performance of AD classification in various scenarios and highlights the importance of the chosen voxels for AD research. The AD classifier with maximum classification accuracy is created using an optimal subset of robust voxels. It represents the final AD diagnosis approach. Experiments with the proposed iSBGA-ELM using OASIS data set showed an average testing accuracy of 87%. Experiments clearly indicated the proposed iSBGA-ELM was efficient for AD diagnosis. It showed improvements over existing techniques.

Keywords

References

  1. P. M. Thompson, K. M. Hayashi, R. A. Dutton, M. C. Chiang, A. D. Leow, E. R. Sowell, G. De Zubicaray, J. T. Becker, O. L. Lopez, H. J. Aizenstein, et al., "Tracking Alzheimer's disease. Annals of the New York Academy of Sciences, vol. 1097, no. 1, pp. 183-214, 2007. https://doi.org/10.1196/annals.1379.017
  2. O. L. Lopez, J. T. Becker, C. A. Jungreis, D. Rezek, C. Estol, F. Boiler, and S. T. DeKosky, "Computed tomography-but not magnetic resonance imaging-identified periventricular white-matter lesions predict symptomatic cerebrovascular disease in probable Alzheimer's disease," Archives of Neurology, vol. 52, no. 7, pp. 659-664, 1995. https://doi.org/10.1001/archneur.1995.00540310029012
  3. K. A. Jobst, L. P. Barnetson, and B. J. Shepstone, "Accurate prediction of histologically confirmed Alzheimer's disease and the differential diagnosis of dementia: the use of NINCDS-ADRDA and DSM-III-R criteria, SPECT, X-ray CT, and Apo E4 in medial temporal lobe dementias," International Psychogeriatrics, vol. 10, no. 3, pp. 271-302, 1998. https://doi.org/10.1017/S1041610298005389
  4. J. Ramirez, J. M. Gorriz, M. Lopez, D. Salas-Gonzalez, I. Alvarez, F. Segovia, and C. G. Puntonet, "Early detection of the alzheimer disease combining feature selection and kernel machines," In International Conference on Neural Information Processing, Heidelberg: Springer, 2008, pp. 410-417.
  5. M. Lopez, J. Ramirez, J. M. Gorriz, I. Alvarez, D. Salas-Gonzalez, F. Segovia, R. Chaves, P. Padilla, and M. Gomez-Rio, "Principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimer's disease," Neurocomputing, vol. 74, no. 8, pp. 1260-1271, 2011. https://doi.org/10.1016/j.neucom.2010.06.025
  6. S. Kloppel, C. M. Stonnington, C. Chu, B. Draganski, R. I. Scahill, J. D. Rohrer, N. C. Fox, C. R. Jack, J. Ashburner, and R. S. Frackowiak, "Automatic classification of MR scans in Alzheimer's disease," Brain, vol. 131, no. 3, pp. 681-689, 2008. https://doi.org/10.1093/brain/awm319
  7. C. Davatzikos, Y. Fan, X. Wu, D. Shen, and S. M. Resnick, "Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging," Neurobiology of Aging, vol. 29, no. 4, pp. 514-523, 2008. https://doi.org/10.1016/j.neurobiolaging.2006.11.010
  8. C. R. Jack, R. C. Petersen, Y. C. Xu, P. C. O'Brien, G. E. Smith, R. J. Ivnik, B. F. Boeve, S. C. Waring, E. G. Tangalos, and E. Kokmen, "Prediction of AD with MRIbased hippocampal volume in mild cognitive impairment," Neurology, vol. 52, no. 7, pp. 1397-1397, 1999. https://doi.org/10.1212/WNL.52.7.1397
  9. R. J. Killiany, B. T. Hyman, T. A. Gomez-Isla, M. B. Moss, R. Kikinis, F. Jolesz, R. Tanzi, K. Jones, and M. S. Albert, "MRI measures of entorhinal cortex vs hippocampus in preclinical AD," Neurology, vol. 58, no. 8, pp. 1188-1196, 2002. https://doi.org/10.1212/WNL.58.8.1188
  10. G. B. Frisoni, M. P. Laakso, A. Beltramello, C. Geroldi, A. Bianchetti, H. Soininen, and M. Trabucchi, "Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer's disease," Neurology, vol. 52, no. 1, pp. 91-91, 1999. https://doi.org/10.1212/WNL.52.1.91
  11. Z. Lao, D. Shen, Z. Xue, B. Karacali, S.M. Resnick and C. Davatzikos, "Morphological classification of brains via highdimensional shape transformations and machine learning methods," NeuroImage, vol. 21, no. 1, pp. 46-57, 2004. https://doi.org/10.1016/j.neuroimage.2003.09.027
  12. M. Chupin, E. Gerardin, R. Cuingnet, C. Boutet, L. Lemieux, S. Lehericy, H. Benali, L. Garnero, and O. Colliot, "Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI," Hippocampus, vol. 19, no. 6, pp. 579-587, 2009. https://doi.org/10.1002/hipo.20626
  13. J. Ashburner and K. J. Friston, "Voxel-based morphometry: the methods," Neuroimage, vol. 11, no. 6, pp. 805-821, 2000. https://doi.org/10.1006/nimg.2000.0582
  14. B. S. Mahanand, S. Suresh, N. Sundararajan, and M. A. Kumar, "Alzheimer's disease detection using a self-adaptive resource allocation network classifier," in Proceedings of the 2011 International Joint Conference on Neural Networks (IJCNN), San Jose, CA, 2011, pp. 1930-1934.
  15. D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris, and R. L. Buckner, "Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults," Journal of Cognitive Neuroscience, vol. 19, no. 9, pp. 1498-1507, 2007. https://doi.org/10.1162/jocn.2007.19.9.1498
  16. S. Saraswathi, S. Sundaram, N. Sundararajan, M. Zimmermann, and M. Nilsen-Hamilton, "ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 8, no. 2, 452-463, 2011. https://doi.org/10.1109/TCBB.2010.13
  17. V. Sachnev, S. Saraswathi, R. Niaz, A. Kloczkowski, and S. Suresh, "Multi-class BCGA-ELM based classifier that identifies biomarkers associated with hallmarks of cancer," BMC Bioinformatics, vol. 16, article no. 166, 2015.
  18. S. Suresh, S. N. Omkar, V. Mani, and T. G. Prakash, "Lift coefficient prediction at high angle of attack using recurrent neural network," Aerospace Science and Technology, vol. 7, no. 8, pp. 595-602, 2003. https://doi.org/10.1016/S1270-9638(03)00053-1
  19. G. B. Huang, Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: theory and applications," Neurocomputing, vol. 70, no. 1, pp. 489-501, 2006. https://doi.org/10.1016/j.neucom.2005.12.126