DOI QR코드

DOI QR Code

Review of Long-term Climate Change Research Facilities for Forests

기후변화 대응 산림의 장기 기후변화 연구시설

  • Seo, Dong-Jin (Department of Ecological Landscape, National Institute of Ecology) ;
  • Kim, Hyun-chul (Division of Tree Breeding, National Institute of Forest Science) ;
  • Lee, Hyun Seok (Division of Tree Breeding, National Institute of Forest Science) ;
  • Lee, Solji (Division of Tree Breeding, National Institute of Forest Science) ;
  • Lee, Wi-Yeong (Division of Tree Breeding, National Institute of Forest Science) ;
  • Han, Sim-Hee (Division of Tree Breeding, National Institute of Forest Science) ;
  • Kang, Jun Won (Division of Tree Breeding, National Institute of Forest Science)
  • 서동진 (국립생태원 생물관리연구본부 식물관리연구실) ;
  • 김현철 (국립산림과학원 산림유전자원부 임목육종과) ;
  • 이현석 (국립산림과학원 산림유전자원부 임목육종과) ;
  • 이솔지 (국립산림과학원 산림유전자원부 임목육종과) ;
  • 이위영 (국립산림과학원 산림유전자원부 임목육종과) ;
  • 한심희 (국립산림과학원 산림유전자원부 임목육종과) ;
  • 강준원 (국립산림과학원 산림유전자원부 임목육종과)
  • Received : 2016.11.03
  • Accepted : 2016.12.16
  • Published : 2016.12.30

Abstract

Carbon dioxide ($CO_2$) accounts for about 72% of the total greenhouse gas emissions. It is also widely known as a major cause of global warming. According to the IPCC's fifth evaluation report, the growth rate of atmospheric $CO_2$ has increased by 35% for the last 100 years and global warming is occurring much more rapidly than expected since 1990s. As a result of climate change, global warming is increasing the frequency and severity of extreme weather events around the world, which has changed forest vegetation zone and vegetation phenology. The Kyoto Protocol recognizes the importance of forests and refers to the conservation and enhancement of forests as sinks and reservoirs of greenhouse gases. In this regard, studies of tree responses to climate change are indispensable for predicting changes in the forest ecosystems in the future. Therefore, studies using long-term climate change research facilities, associated with long-term ecological research (LTER) in the fields, will make a considerable contribution to predict and approach the changes in the future.

전체 온실가스 배출량의 약 72%를 차지하는 이산화탄소($CO_2$)는 지구온난화를 야기하는 대표적인 온실가스로 분류되어 있다. IPCC의 제5차 기후변화 종합평가보고서(2014)에 의하면, 지난 100년간 지구 대기의 $CO_2$는 약 35% 증가했으며 지구의 온난화는 최근 30년간 심화되는 것으로 나타났다. 이에 따라 지구 온난화에 따른 기후변화, 기상이변으로 산림식생대의 이동과 식물계절 변화가 유발되고 있다. 산림은 교토의정서에서 인정한 유일한 온실가스 흡수원으로서 보전 및 증진 필요성이 있으며 기후변화에 대한 수목 반응의 연구는 미래의 산림생태계 변화를 예측하는데 필수불가결한 요소이다. 따라서 장기 기후변화 연구시설을 이용한 수목의 생리 생태적 반응 연구와 실제 산지에서 이루어지는 장기 모니터링 연구를 결부하여 이용한다면 기후변화로 인한 미래 산림생태계의 변화를 예측하고 대응하는데 크게 기여할 것이다.

Keywords

References

  1. Ainsworth, E. A., and S. P. Long, 2004: What have we learned from 15 years of free air $CO_2$ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising $CO_2$. New Phytologist 165, 351-372. https://doi.org/10.1111/j.1469-8137.2004.01224.x
  2. Australian Government, 2007: Department of the Environment and Water Resources Annual Report 2006-07 Volume 1, Australian Government, 36pp.
  3. Bazzaz, F. A., 1990: The response of natural ecosystems to the rising global $CO_2$ levels. Annual Review of Ecology and Systematics 21, 167-196. https://doi.org/10.1146/annurev.es.21.110190.001123
  4. Bowes, G., 1996: Photosynthetic responses to changing atmospheric carbon dioxide concentration. Advances in Photosynthesis and Respiration 5, 387-407.
  5. Cambell, W. J., L. H. Allen, and G. Bowes, 1988: Effects of $CO_2$ concentration on rubisco activity, amount, and photosynthesis in soybean leaves. Plant Physiology 88, 1310-1316. https://doi.org/10.1104/pp.88.4.1310
  6. Ceulemans, R., and M. Mousseau, 1994: Effects of elevated atmospheric $CO_2$ on woody plants. New Phytologist 127(3), 425-446. https://doi.org/10.1111/j.1469-8137.1994.tb03961.x
  7. Curtis, P. S, and X. Wang. 1998: A meta-analysis of elevated $CO_2$ effects on woody plant mass, form, and physiology. Oecologia 113(3), 299-313. https://doi.org/10.1007/s004420050381
  8. Dabros, A., 2008: Effects of simulated climate change on post-disturbance Populus tremuloides - Picea mariana ecosystems in northwestern Quebec. Ph.D. thesis, McGill University.
  9. Dabros, A., and J. W. Fyles, 2010: Effects of open-top chambers and substrate type on biogeochemical processes at disturbed boreal forest sites in northwestern Quebec. Plant Soil 327(1), 465-479. https://doi.org/10.1007/s11104-009-0077-z
  10. Drake, B. J., M. A. Gonza'lez-Meler, and S. P. Long, 1997: More efficient plants: a consequence of rising atmospheric $CO_2$? Annual Review of Plant Physiology Plant Molecular Biology 48, 609-639. https://doi.org/10.1146/annurev.arplant.48.1.609
  11. Enoch, H. Z., and S. J. Honour, 1993: Significance of increasing ambient $CO_2$ for plant growth and survival, and interactions with air pollution. NATO ASI Series 16, 51-75.
  12. Eamus, G. A. and C. A. Berryman, 1995: Photosynthetic responses to temperature, light flux-density, $CO_2$ concentration and vapour pressure deficit in Eucalyptus tetrodonta grown under $CO_2$ enrichment. Environmental Pollution 90, 41-49. https://doi.org/10.1016/0269-7491(94)00088-U
  13. Gifford, R. M., 1992: Interaction of carbon dioxide with growth-limiting environmental factors in vegetation productivity: implications for the global carbon cycle. Advances in Bioclimatology 1, 24-58. https://doi.org/10.1007/978-3-642-58136-6_2
  14. Hawkins, B, S. Sharrock, and K. Havens, 2008: Plants and climate change: which future? Botanic Gardens Conservation International, Richmond, UK.
  15. Heagle, A. S., D. E. Body, and W. W. Heck, 1973: An open top field chamber to assess the impact of air pollution on plants. Journal of Environmental Quality 2, 365-368.
  16. Hendrey, G. R., D. S. Ellsworth, K. F. Lewin, and J. Nagy, 1999: A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric $CO_2$. Global Change Biology 5(3), 293-309. https://doi.org/10.1046/j.1365-2486.1999.00228.x
  17. IPCC, 2014: Synthesis Report of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). WMO and UNEP. Cambridge university press, Cambridge, New york, U.S.A.
  18. Hong., S. C., P. G. Shin, A. C. Jang, B. G. Ahn, S. H. Kim, I. B. Lee, and T. R. Gwon, 2008: Growth responses of pepper interpret research in accordance with the increase in $CO_2$ concentration. Rural Development Administration 580-595.
  19. Kim, P. G., and E. J. Kim, 2001: Ecophysiology of photosynthesis 1: effects of light intensity and intercellular $CO_2$ pressure on photosynthesis. Korean journal of Agricultural and Forest Meteorology 3(2), 126-133.
  20. Kim, S. Y., and H. J. Kang, 2003: Effects of elevated atmospheric $CO_2$ on wetland plants: a review. Korean Journal of Limnology 36(4), 391-402.
  21. Kimball, B. A., J. R. Mauney, F. S. Nakayama, and S. B. Idso, 1993: Effects of increasing atmospheric $CO_2$ on vegetation. Vegetatio 104(105), 65-75.
  22. Kimball, B. A., S. B. Idso, S. J. Ohnson, and M. C. Rillig, 2007: Global seventeen years of carbon dioxide enrichment of sour orange trees: final results. Change Biology 13, 2171-2183. https://doi.org/10.1111/j.1365-2486.2007.01430.x
  23. Koike, T., T. T. Lei, T. C. Maximov, R. Tabuchi, K. Takahashi, and B. I. Ivanov, 1996: Comparison of the photosynthetic capacity of Siberian and Japanese birch seedlings grown in elevated $CO_2$ and temperature. Tree Physiology and Field Biology 29, 41-47.
  24. Kwon, H. J., S. G. Lee, M. Y. Park, Y. I. Song, J. C. Nam, S. B. Kang, T. M. Yoon, and D. H. Sagong, 2010: Influence of elevated $CO_2$ or air temperature on photosynthesis of 'Fuji'/M.9 young apple tree. Korean Journal of Horticultural Science & Technology 28(2), 85.
  25. Leakey, A. D. B., F. Xu, K. M. Gillespie, J. M. McGrath, E. A. Ainsworth, and D. R. Ort, 2009: The genomic basis for stimulated respiratory carbon loss to the atmosphere by plants growing under elevated [$CO_2$]. Proceedings of the National Academy of Sciences 106, 3597-3602. https://doi.org/10.1073/pnas.0810955106
  26. Lee, I. B., S. B. Kang, and J. M. Park, 2008: Effect of elevated carbon dioxide concentration and temperature on yield and fruit characteristics of tomato (Lycopersicon esculentum Mill.). Korean Journal of Environmental Agriculture 27(4), 428-434. https://doi.org/10.5338/KJEA.2008.27.4.428
  27. Lee, J. C., D. H. Kim, G. N. Kim, P. G. Kim, and S. H. Han, 2012: Long-term climate change research facility for trees: $CO_2$-enriched open top chamber system. Korean Journal of Agricultural and Forest Meteorology 14(1), 19-27. https://doi.org/10.5532/KJAFM.2012.14.1.019
  28. Lee, J. S., T. Usami, and T. Oikawa, 2001: High performance of $CO_2$ temperature gradient chamber newly built for studying the global warming effect. Ecological Research 16, 347-358. https://doi.org/10.1046/j.1440-1703.2001.00398.x
  29. Lee, S. J., C. Y. Oh, S. H. Han, K. W. Kim, and P. G. Kim, 2014: Photosynthetic responses of Populus alba${\times}$glandulosa to Elevated $CO_2$ concentration and air temperature. Korean Journal of Agricultural and Forest Meteorology 16(1), 22-28. https://doi.org/10.5532/KJAFM.2014.16.1.22
  30. Lemon, E. R., 1983: $CO_2$ and plants: the response of plants to rising levels of atmospheric carbon dioxide. American Association for the Advancement of Science Selected Symposium 84. Westview Press, Boulder, USA, 280pp.
  31. Lim, G. B., 2005: Principle of silviculture. Hyangmoonsa, 300pp.
  32. Lim, J. K., Choi S. Y., and Cho S. G., 2008: Effects of biodiesel fuel on exhaust emission characteristics in diesel engine (using soybean oil). Journal of Korean Marine Engineering 32, 27-32. https://doi.org/10.5916/jkosme.2008.32.1.27
  33. Long, S. P., 1991: Modification of the response of photosynthetic productivity to rising temperature by atmospheric $CO_2$ concentration: Has its importance been underestimated?. Plant, Cell and Environment 14, 729-739. https://doi.org/10.1111/j.1365-3040.1991.tb01439.x
  34. Long, S. P., E. A. Ainsworth, A. Rogers, and D. R. Ort, 2004: Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Biology 55, 591-628. https://doi.org/10.1146/annurev.arplant.55.031903.141610
  35. Mauri, A., 2010: Field experiments using $CO_2$ enrichment: a comparison of two main methods. Biogeosciences and Forestry 3(1), 109-112. https://doi.org/10.3832/ifor0545-003
  36. Milkael, H., and X. Tang, 2013: Depletion of fossil fuels and anthropogenic climate change-A review. Energy Policy 52, 797-809. https://doi.org/10.1016/j.enpol.2012.10.046
  37. Morison, J. I. L., and D. W. Lawlor, 1999: Interactions between increasing $CO_2$ concentration and temperature on plant growth. Plant Cell & Environment 22, 659-682. https://doi.org/10.1046/j.1365-3040.1999.00443.x
  38. Morison, J. I. L., 2001: Increasing atmospheric $CO_2$ and stomata. New Phytologist 149(2), 154-158. https://doi.org/10.1046/j.1469-8137.2001.00042.x
  39. Moutinho-Pereira, J. M., E. A. Bacelar, B. Goncalves, H. F. Ferreira, J. F. Coutinho, and C. M. Correiam, 2010: Effects of open-top chambers on physiological and yield attributes of field grown grapevines. Acta Physiologiae Plantarum 32(2), 395-403. https://doi.org/10.1007/s11738-009-0417-x
  40. Nijs, I., F. Kockelbergh, H. Teughels, H. Blum, G. Hendrey, and I. Impens, 1996: Free air temperature increase (FATI): a new tool to study global warming effects on plants in the field. Plant, Cell and Environment 19, 495-502. https://doi.org/10.1111/j.1365-3040.1996.tb00343.x
  41. Norby, R., N. Edwards, J. Riggs, C. Abner, S. Wullschleger, and C. Gunderson, 1997: Temperature-controlled open-top chambers for global change research. Global Change Biology 3(3), 259-267. https://doi.org/10.1046/j.1365-2486.1997.00072.x
  42. Olszyk, D., T. W. Tibbitts, and W. M. Hertzberg, 1980: Environment in open-top field chambers utilized for air pollution studies. Journal of Environmental Quality 9(4), 610-615.
  43. Onoda, Y., T. Hirose, and K. Hikosaka, 2009: Does leaf photosynthesis adapt to $CO_2$-enriched environments? An experiment on plants originating from three natural $CO_2$ springs. New Phytologist 182, 698-709. https://doi.org/10.1111/j.1469-8137.2009.02786.x
  44. Pinter, P. J., B. A. Kimball, G. W. Wall, D. Hunsaker, and R. L. Lamorte, 1996: Free-air $CO_2$ enrichment of cotton and wheat crops. In Carbon Dioxide and Terrestrial Ecosystems (eds Koch GW, Mooney HA). Academic Press, SanDiego, CA. 215-250.
  45. Pooter, H., 1993: Inter specific variation in the growth response of plants to an elevated ambient $CO_2$ concentration. Vegetatio 105(1), 77-97.
  46. Raison, J., D. Eamus, R. Gifford, and J. McGrath, 2007: Feasibility of forest free air $CO_2$ enrichment (FACE) experimentation in Australia. Australian Greenhouse Office, Department of the Environment and Water Resources, 108pp.
  47. Rogers, H. H., W. W. Heck, and A. S. Heagle, 1983: A field technique for study of plant responses to elevated carbon dioxide concentrations. Journal Air Pollution Control Association 33(1), 42-44. https://doi.org/10.1080/00022470.1983.10465546
  48. Roy, J., H. Mooney, and B. Saugier, 2001: Terrestrial global productivity. (1st Edition) Academic Press.
  49. Wayne, N. L, J. Kim, and E. Lee, 1998: Prolonged hormone secretion from neuroendocrine cells of Aplysia is independent of extracellular Calcium. Journal of Neuroendocrinology 10(7), 529-537. https://doi.org/10.1046/j.1365-2826.1998.00235.x
  50. Spencer, W., and G. Bowes, 1986: Photosynthesis and growth water hyacinth under $CO_2$ enrichment. Plant Physiology 82(2), 528-533. https://doi.org/10.1104/pp.82.2.528
  51. Zhang, J. H., S. J. Han, and G. Z. Song, 2005: Turbulence statistics of natural airflow within a large open top chamber. Journal of Forestry Research 16(4), 303-305. https://doi.org/10.1007/BF02858196