참고문헌
- Abdelhak, Z., Hadji, L., Daouadji, T. and Bedia, E. (2015), "Thermal buckling of functionally graded plates using an-order four variable refined theory", Adv. Mater. Res., 4(1), 31-44. https://doi.org/10.12989/amr.2015.4.1.31
- Ait, Y.S., Ait, A.H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar, B.O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Brazil. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
- Bohidar, S.K., Sharma, R. and Mishra, P.R. (2014), "Functionally graded materials: A critical review", J. Res., 1(7), 289-301.
- Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on winkler-pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
- Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
- Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", J. Comput. Methods, 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
- Carpinteri, A. and Pugno, N. (2006), "Cracks in re-entrant corners in functionally graded materials", Eng. Fract. Mech., 73(6), 1279-1291. https://doi.org/10.1016/j.engfracmech.2006.01.008
- Chakrabarty, J. (2006), Theory of Plasticity, Elsevier Butterworth-Heinemann, Oxford.
- Daouadji, T. and Adim, B. (2016), "Theoretical analysis of composite beams under uniformly distributed load", Adv. Mater. Res., 5(1), 1-9. https://doi.org/10.12989/amr.2016.5.1.001
- Daouadji, T., Adim, B. and Benferhat, R. (2016), "Bending analysis of an imperfect FGM plates under hygro-thermo-mechanical loading with analytical validation", Adv. Mater. Res., 5(1), 35-53. https://doi.org/10.12989/amr.2016.5.1.035
- Gasik, M.M. (2010), "Functionally graded materials: Bulk processing techniques", J. Mater. Prod. Technol., 39(1-2), 20-29. https://doi.org/10.1504/IJMPT.2010.034257
- Guadette, F.G., Giannapoulos, A.E. and Suresh, S. (2001), "Interfacial cracks in layered materials subjected to a uniform temperature change", J. Fract., 28(1), 5620-5629.
- Hadji, L., Khelifa, Z. and Bedia, E.A.A. (2016), "A New higher order shear deformation model for functionally graded beams", KSCE J. Civil Eng., 20(5), 1835-1841. https://doi.org/10.1007/s12205-015-0252-0
- Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
- Her, S.C. and Su, W.B. (2015), "Interfacial fracture toughness of multilayered composite structures", Strength Mater., 47(1), 186-191. https://doi.org/10.1007/s11223-015-9646-y
- Hsueh, C.H., Tuan, W.H. and Wei, W.C.J. (2009), "Analyses of steady-state interface fracture of elastic multilayered beams under four-point bending", Scripta Mater., 60(1), 721-724. https://doi.org/10.1016/j.scriptamat.2009.01.001
- Ivanov, I. and Draganov, I. (2014), "Influence and simulation of laminated glass subjected to low-velocity impact", Mech. Mach., 110, 89-94.
- Ivanov, V., Velchev, D.S., Georgiev, N.G., Ivanov, I.D. and Sadowski, T. (2016), "A plate finite element for modelling of triplex laminated glass and comparison with other computational models", Meccanica, 51(2), 341-358. https://doi.org/10.1007/s11012-015-0275-0
- Jiao, J., Gurumurthy, G.K., Kramer, E.J., Sha, Y., Hui, C.Y. and Borgesen, P. (1998), "Measurement of interfacial fracture toughness under combined mechanical and thermal stress", J. Electr. Pack., 120(1), 325-349.
- Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
- Markov, I. and Dinev, D. (2005), "Theoretical and experimental investigation of a beam strengthened by bonded composite strip", Proceedings of the International Scientific Conference VSU.
- Nemat-Allal, M.M., Ata, M.H., Bayoumi, M.R. and Khair-Eldeen, W. (2011), "Powder metallurgical fabrication and microstructural investigations of Aluminum/Steel functionally graded material", Mater. Sci. Appl., 2(5), 1708-1718.
- Pei, G. and Asaro, R.J. (1997), "Cracks in functionally graded materials", J. Solids Struct., 34(1), 1-17. https://doi.org/10.1016/0020-7683(95)00289-8
- Petrov, V.V. (2014), Non-Linear Incremental Structural Mechanics, M.: Infra-Injeneria.
- Rizov, V. and Mladensky, A. (2012), "Crack investigation in bi-layered composite beam of circular cross-section", J. Mater. Sci. Technol., 20(2), 72-83.
- Szekrenyes, A. and Vicente, W.M. (2012), "Interlaminar fracture analysis in the GII-GIII plane using prestressed transparent composite beams", Compos. Part A: Appl. Sci. Manufact., 43(1), 95-103. https://doi.org/10.1016/j.compositesa.2011.09.022
- Szekrenyes, A. (2010), "Fracture analysis in the modified split-cantilever beam using the classical theories of strength of materials", J. Phys. Conf. Series, 240(1), 012030. https://doi.org/10.1088/1742-6596/240/1/012030
- Tilbrook, M.T., Moon, R.J. and Hoffman, M. (2005), "Crack propagation in graded composites", Compos. Sci. Technol., 65(2), 201-220. https://doi.org/10.1016/j.compscitech.2004.07.004
- Upadhyay, A.K. and Simha, K.R.Y. (2007), "Equivalent homogeneous variable depth beams for cracked FGM beams; compliance approach", J. Fract., 144(2), 209-213. https://doi.org/10.1007/s10704-007-9089-y
- Yeung, D.T.S., Lam, D.C.C. and Yuen, M.M.F. (2000), "Specimen design for mixed mode interfacial fracture properties measurement in electronic packages", J. Electr. Pack., 122(2), 67-72. https://doi.org/10.1115/1.483137
- Zhang, H., Li, X.F., Tang, G.J. and Shen, Z.B. (2013), "Stress intensity factors of double cantilever nanobeams via gradient elasticity theory", Eng. Fract. Mech., 105(1), 58-64. https://doi.org/10.1016/j.engfracmech.2013.03.005
피인용 문헌
- Non-linear fracture in bi-directional graded shafts in torsion pp.1573-6105, 2018, https://doi.org/10.1108/MMMS-12-2017-0163
- Nonlinear Delamination Analysis of Mulyilayered Functionally Graded Circular Shafts in Torsion vol.59, pp.6, 2018, https://doi.org/10.1134/S0021894418060160
- Longitudinal Fracture Analysis of Nonlinear Elastic Circular Shafts Loaded in Torsion vol.51, pp.2, 2019, https://doi.org/10.1007/s11223-019-00073-w
- Torsion of circular open cross-section with corrugated inner and outer surface vol.73, pp.1, 2016, https://doi.org/10.12989/sem.2020.73.1.075
- Delamination of multilayered non-linear elastic shafts in torsion vol.48, pp.3, 2020, https://doi.org/10.5937/fme2003681r