DOI QR코드

DOI QR Code

장기분지 사암과 역암 공극 내 초임계 이산화탄소 대체저장효율 측정에 의한 이산화탄소 저장성능 평가

Evaluation of the CO2 Storage Capacity by the Measurement of the scCO2 Displacement Efficiency for the Sandstone and the Conglomerate in Janggi Basin

  • 김세윤 (부경대학교 지구환경과학과) ;
  • 김정택 (부경대학교 지구환경과학과) ;
  • 이민희 (부경대학교 지구환경과학과) ;
  • 왕수균 (부경대학교 에너지자원공학과)
  • Kim, Seyoon (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Kim, Jungtaek (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Lee, Minhee (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Wang, Sookyun (Department of Energy Resources Engineering, Pukyong National University)
  • 투고 : 2016.11.07
  • 심사 : 2016.12.07
  • 발행 : 2016.12.28

초록

국내 이산화탄소 지중저장 저장암의 저장성능을 평가하기 위하여, 이산화탄소 주입 시 저장암 내 공극수와 대체되는 초임계이산화탄소($scCO_2$)량을 실험실에서 측정하는 기술을 개발하였다. 국내 $CO_2$ 육상 지중저장 후보지로 판단되는 장기분지 사암과 역암에 대하여, 지중 저장 조건에서 $scCO_2$를 저장암 내부로 주입하는 경우, 공극 내 존재하는 지하수를 대체하여 저장되는 $scCO_2$ 대체저장효율(displacement efficiency)을 측정하였다. 국내 육상 지중저장 후보지인 장기분지 주변 대심도 시추공에서 채취한 사암과 역암 코어를 훼손하지 않고 그대로 사용하여 대체저장효율을 측정할 수 있는 '이중벽 고압셀'을 제작하였다. 시추한 암석 코아를 원형 그대로 고압셀 내부에 밀착시켜 $scCO_2$를 암석 공극 내 충분히 주입 한 후, 공극에 포화되어 있던 지하수와 대체된 $scCO_2$ 대체저장효율을 측정한 결과, 장기분지 역암과 사암의 평균 $scCO_2$ 대체저장효율은 각각 31.2%와 14.4%이었다. 장기분지 역암과 사암의 $scCO_2$ 저장량을 계산하기 위하여 대심도 시추 자료, 시추 부지 주변 지질조사 및 물리탐사 자료로부터 주입 후보지 하부에 존재하는 장기분지 역암과 사암층의 평균 두께를 각각 50 m, 두 지층의 연장 면적을 주입공 주변으로 반경 250 m로 가정하였다. 실험으로부터 얻어진 $scCO_2$ 대체저장효율, 평균 유효 공극률, 지중저장 조건에서 $scCO_2$의 밀도값 등을 이용하여 계산된 시추공 주변 하부 장기분지 역암과 사암층의 $scCO_2$ 저장량은 264,592 t (metric ton)으로 계산되었다. 본 실험결과로부터 대심도 시추공 주변 장기분지의 역암과 사암층은 수 만톤 규모의 $CO_2$ 주입과 저장 실증 시험을 위해 충분한 저장성능을 보유하고 있는 국내 육상 $CO_2$ 지중저장 후보지임을 입증하였다.

To evaluate the $CO_2$ storage capacity for the reservoir rock, the laboratory scale technique to measure the amount of $scCO_2$, replacing pore water of the reservior rock after the $CO_2$ injection was developed in this study. Laboratory experiments were performed to measure the $scCO_2$ displacement efficiency of the conglomerate and the sandstone in Janggi basin, which are classified as available $CO_2$ storage rocks in Korea. The high pressurized stainless steel cell containing two different walls was designed and undisturbed rock cores acquired from the deep drilling site around Janggi basin were used for the experiments. From the lab experiments, the average $scCO_2$ displacement efficiency of the conglomerate and the sandstone in Janggi basin was measured at 31.2% and 14.4%, respectively, which can be used to evaluate the feasibility of the Janggi basin as a $scCO_2$ storage site in Korea. Assuming that the effective radius of the $CO_2$ storage formations is 250 m and the average thickness of the conglomerate and the sandstone formation under 800 m in depth is 50 m each (from data of the drilling profile and the geophysical survey), the $scCO_2$ storage capacity of the reservoir rocks around the probable $scCO_2$ injection site in Janggi basin was calculated at 264,592 metric ton, demonstrating that the conglomerate and the sandstone formations in Janggi basin have a great potential for use as a pilot scale test site for the $CO_2$ storage in Korea.

키워드

참고문헌

  1. Bachu, S. (2015) Review of $CO_2$ storage efficiency in deep saline aquifer. Int. J. Greenh. Gas Control, v.40, p. 188-202. https://doi.org/10.1016/j.ijggc.2015.01.007
  2. Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N. and Mathiassen, O. (2007) $CO_2$ storage capacity estimation, methodology and gaps. Int. J. Greenh. Gas Control, v.1, p.430-443. https://doi.org/10.1016/S1750-5836(07)00086-2
  3. COP(Conference of the Parties) (2015) The Paris Agreement, The 21st Conferences of the Parties, Paris, France.
  4. Domenico, P.A. and Schwartz, F.W. (1998) Physical and Chemical Hydrogeology, 2nd ed. John Wiley & Sons, Inc, New York.
  5. Gorecki, CD., SPE(Society of Petroleum Engineers), Sorensen, J.A., Bremer J.M., Knudsen, D.J., Smith, S.A., Steadman, E.N. and Harju, J.A. (2009) Development of storage coefficients for determining the effective $CO_2$ storage resource in deep saline formations. In 2009 International SPE Conference on $CO_2$ Capture, Storage, and Utilization in San Diego, California.
  6. Hitchen, B. (1996) Aquifer disposal of carbon dioxide, hydrologic and mineral trapping, Geoscience Publishing Sherwood Park, Alberta, Canada.
  7. Holloway, S. (1997) An overview of the underground disposal of carbon dioxide. Energy Convers. Manag., v.38, p.193-198. https://doi.org/10.1016/S0196-8904(96)00268-3
  8. IWR(International Economic Platform for Renewable Energies) (2012) Climate: Global $CO_2$ emissions rise to new record level in 2011. press on Renewable Energy Industry, Germany. http://www.cerina.org/co2-2011.
  9. Kampman, N., Bickle, M., Wigley, M. and Dubacq, B. (2014) Fluid flow and $CO_2$-fluid-mineral interactions during $CO_2$-storage in sedimentary basin. Chem. Geol., v.369, p.22-50. https://doi.org/10.1016/j.chemgeo.2013.11.012
  10. Kim, M., Gihm, Y., Son, E., Son M., Hwang, I.G., Shinn, Y.J. and Choi, H. (2015) Assessment of the potential for geological storage of $CO_2$ based on structural and sedimentologic characteristics in the Miocene Janggi basin, SE Korea. J. Geol. Soc. Korea, v.51, p.253-271. https://doi.org/10.14770/jgsk.2015.51.3.253
  11. Kim, M., Kim, J., Jung, S., Son, M. and Sohn, Y.K. (2011) Bimodal volcanism and classification of the Miocene basin fill in the northern area of the Janggi-myeon, Pohang, southeast Korea. J. Geol. Soc. Korea, v.45, p.463-472.
  12. Lindeberg, E., Vuillaume, J. and Ghaderi, A. (2009) Determination of the $CO_2$ storage capacity of the Utsira formation, Energy Proc., v.1, p.2777-2784. https://doi.org/10.1016/j.egypro.2009.02.049
  13. NETL(National Energy Technology Laboratory) (2007) Carbon Sequestration Atlas of the United States and Canada, Annual Report. U.S. Department of Energy/ Office of Fossil Energy.
  14. NETL(National Energy Technology Laboratory) (2010) Carbon Sequestration Atlas of the United States and Canada, Annual Report. U.S. Department of Energy/ Office of Fossil Energy.
  15. Park, J. Y., Baek, K. B., Lee, M. and Wang, S. (2015) Physical property changes of sandstones in Korea derived from the supercritical $CO_2$-sandstone-groundwater geochemical reaction under $CO_2$ sequestration condition. Geosci. J., v.19, p.313-324. https://doi.org/10.1007/s12303-014-0036-4
  16. Rutqvist, J., Birkholzer, J.T., Cappa, F. and Tsang, C.F. (2007) Estimating maximum sustainable injection pressure during geological sequestration of $CO_2$ using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers. Manag., v.48, p.1798-1807. https://doi.org/10.1016/j.enconman.2007.01.021
  17. Smith, D.J., Noy, D.J., Holloway, S. and Chadwick, R.A. (2011) The impact of boundary conditions on $CO_2$ storage capacity estimation in aquifers, Energy Proc., v.4, p.4828-4834. https://doi.org/10.1016/j.egypro.2011.02.449
  18. Span, R. and Wagner, W. (1996) A new equation of state for carbon dioxide covering the fluid region from the tripple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data, v.25, p.1509-1596. https://doi.org/10.1063/1.555991
  19. Spycher, N. and Pruess, K. (2005) $CO_2$-$H_2O$ mixtures in the geological sequestration of $CO_2$. II. Partitioning in chloride brines at 12-$100^{\circ}C$ and up to 600 bar. Geochim. Cosmochim. Acta, v.69, p.3309-3320. https://doi.org/10.1016/j.gca.2005.01.015
  20. Yu, Z., Liu, L., Yang, S., Li, S. and Yang, Y. (2012) An experimental study of $CO_2$-brine-rock interaction at in situ pressure-temperature reservoir conditions. Chem. Geol., v.326, p.88-101.
  21. Van der Meer, L.G.H. (1995) The $CO_2$ storage efficiency of aquifers. Energy Convers. Manag., v.36, p.513-518. https://doi.org/10.1016/0196-8904(95)00056-J
  22. Zhou, Q., Birkholzer, J.T., Tsang, C. and Rutqvist, J. (2008) A method for quick assessment of $CO_2$ storage capacity in closed and semi-closed saline formations, Int. J. Greenh. Gas Control, v.2, p.626-639. https://doi.org/10.1016/j.ijggc.2008.02.004