DOI QR코드

DOI QR Code

A Pilot Scale Biostimulation Study for In-situ Remediation of Organic Pollutants and PAHs contained in Coastal Sediment

연안 해역퇴적물에 함유된 유기오염물과 PAHs의 현장정화를 위한 파일럿 규모의 생물활성촉진연구

  • Bae, Byung-Uk (Department of Environmental Engineering, Daejeon University) ;
  • Woo, Jung-Hui (Nuclear Power Equipment Research Center, Korea Maritime and Oean University) ;
  • Subha, Bakthavachallam (Department of Environmental Engineering, Korea Maritime and Oean University) ;
  • Song, Young-Chae (Department of Environmental Engineering, Korea Maritime and Oean University)
  • 배병욱 (대전대학교 환경공학과) ;
  • 우정희 (한국해양대학교 원전기자재연구센터) ;
  • 수바 (한국해양대학교 환경공학과) ;
  • 송영채 (한국해양대학교 환경공학과)
  • Received : 2016.08.08
  • Accepted : 2016.11.08
  • Published : 2016.12.31

Abstract

A pilot scale biostimulation experiment was performed under field conditions to degrade organic pollutants and PAHs (Polycyclic Aromatic Compounds) in contaminated coastal sediment. During the experiment, the seawater temperature around the sediment varied from $16.5^{\circ}C$ to $21^{\circ}C$, while the sediment pH was stable at 8.4-8.5. The experiment was conducted over a one year period with a control group and a sample group with a applied biostimulant composed of acetate, sulfate, and nitrate. Chemical oxygen demand decreased 39% in the control group and 79% in the sample group. Volatile solids were reduced from 15 to 7 g/kg in the control group and 2.5 g/kg in the sample group. Out of the 2-, 3- ,4- ,5-, and 6-rings of the 16 vital PAHs, the compound including naphthalene (2-ring), took 2 months to degrade completely, while the degradation efficiency was 55.6% in the control group during the same period. In the case of the 3-ring and 4-ring PAHs, complete degradation in the sample and 46% - 100% degradation in control was observed after one year of the experiment. The 5-ring and 6-ring PAHs were degraded to about 77%-100% in the sample group and 26%-87% in the control group during the one year of the experiment. The study results show that biostimulation is a very effective method to improve the degradation rate of organic pollutants and PAHs (Polycyclic Aromatic Compounds) in contaminated coastal sediment.

연안오염퇴적물에 함유된 유기물질과 PAHs의 현장정화를 위한 생물활성촉진제의 효능을 파일럿 규모의 현장실험을 통하여 1년간 평가하였다. 실험 해역의 수온은 계절적인 요인으로 인해 $16.5^{\circ}C$에서 $21^{\circ}C$까지 변화가 있었으나, 파일럿 반응조의 오염퇴적물의 pH는 8.4-8.5로서 비교적 일정하였다. 파일럿 실험종료 후 바탕시험구와 초산, 황산이온, 질산이온을 함유한 생물활성촉진제를 주입한 오염퇴적물의 화학적 산소요구량은 각각 39% 및 79%까지 감소하였으며, 휘발성고형물은 초기 약 15 g/kg에서 7 g/kg 및 2.5 g/kg까지 각각 감소하였다. PAHs는 2- ,3- ,4- ,5-ring 과 6-ring 16PAHs를 평가하였으며, 생물활성촉진제를 주입한 오염퇴적물에서 2-ring 화합물인 나프탈렌은 실험시작 2개월 후 100%(바탕시험구의 감소율 55.6%)까지 감소되어 가장 빨랐고, 12개월 후 3-ring 및 4-ring PAHs의 감소율은 모두 100%(바탕시험구의 감소율 46%-100%)에 달하였다. 5-ring과 6-ring PAHs의 12개월 후의 감소율은 바탕시험구와 생물활성촉진제를 투여한 오염퇴적물에서 각각 26%-87% 및 77%-100%로 평가되었다. 연안오염퇴적물에 투입한 생물활성촉진제는 유기물질 및 난분해물질인 PAHs의 제거속도를 향상시킬 수 있는 것으로 평가되었다.

Keywords

References

  1. Amini Boroujeni, N., Hassanshahian, M. and Khoshrou, M. R(2014), "Isolation and characterization of phenol degrading bacteria from Persian Gulf". International Journal of Advanced Biological and Biomedical Research, Vol. 2, No. 2, pp. 408-416.
  2. Beller, H. R., Grbic-Galic, D. and Reinhard, M(1992), "Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process", Applied and Environmental Microbiology, Vol. 58, No. 3, pp. 786-793.
  3. Botello, A. V., Villanueva, S. F., Diaz, G. G. and Escobar-Briones, E(1998), "Polycyclic aromatic hydrocarbons in sediments from salina cruz harbour and coastal areas, Oaxaca, Mexico". Marine Pollution Bulletin, Vol. 36, No. 7, pp. 554-558. https://doi.org/10.1016/S0025-326X(98)00026-5
  4. Boudreau, B. P. and Canfield, D. E(1993), "A comparison of closed- and open-system models for porewater pH and calcite-saturation state", Geochimica et Cosmochimica Acta, Vol. 57, No. 2, pp. 317-334. https://doi.org/10.1016/0016-7037(93)90434-X
  5. Chen, C. W. and Chen, C. F(2011), "Distribution, Origin, and Potential toxicological significance of polycyclic aromatic hydrocarbons(PAHs) in sediments of Kaohsiung Harbor, Taiwan", Marine Pollution Bulletin, Vol. 63, pp. 417-423. https://doi.org/10.1016/j.marpolbul.2011.04.047
  6. Coates, J. D., Woodward, J., Allen, J., Philp, P, and Lovley, D. R(1997), "Anaerobic Degradation of Polycyclic Aromatic Hydrocarbons and Alkanes in Petroleum-Contaminated Marine Harbor Sediments", Applied and Environmental Microbiology, Vol. 63, No. 9, pp. 3589-3593.
  7. Hassanshahian, M., Abarian, M. and Cappello, S(2015), "Biodegradation of Aromatic Compounds", Biodegradation and Bioremediation of Polluted Systems-New Advances and Technologies Chapter 6, Edited Volume, p. 176
  8. Hassanshahian, M(2014), "The effects of crude oil on marine microbial communities in sediments from the Persian Gulf and the Caspian Sea: a microcosm experiment". International Journal of Advanced Biological and Biomedical Research, Vol. 2, No. 1, pp. 1-17.
  9. Haritash, A. K. and Kaushik, C. P(2009), "Biodegradation aspects of polycyclic aromatic hydrocarbons(PAHs): A review", Journal of Hazardous Materials, Vol. 169, No. 1-3, pp. 1-15. https://doi.org/10.1016/j.jhazmat.2009.03.137
  10. Harmsen, J., Wieggers, H. J. J., van de Akker, J. J. H. and van Diik-Hooyer, O. M(1997), "Intensive and extensive treatment of dredged sediments on landfarms". Bioremediation international symposium 4th, Vol. 2, pp. 153-158.
  11. Hunter, R. D., Ekunwe, S. I. N., Dodor, D. E., Hwang, H. M. and Ekunwe, L.2005), "Bacillus subtilis is a potential degrader of pyrene and benzo(a)pyrene". International Journal of Environmental Research and Public Health, Vol. 2, No. 2, pp. 267-271. https://doi.org/10.3390/ijerph2005020010
  12. Jackson, J. B. C., Cubit, J. D., Keller, B. D., Batista, V., Burns, K., Caffey, H. M., Caldwell, R. L., Garrity, S. D. and Getter, C. D(1989), "Ecological effects of a major oil spill on panamanian coastal marine communities", Science, Vol. 243, pp. 37-44. https://doi.org/10.1126/science.243.4887.37
  13. Jarvis, I. W., Dreij, K., Mattsson, A., Jernstrom, B. and Stenius, U(2014), "Interactions between polycyclic aromatic hydrocarbons in complex mixtures and implications for cancer risk assessment". Toxicology, Vol. 321, pp. 27-39. https://doi.org/10.1016/j.tox.2014.03.012
  14. Johnsen, A. R., Wick, L. Y. and Harms, H(2005), "Principles of microbial PAH-degradation in soil", Environmental Pollution, Vol. 133, No. 1, pp. 71-84. https://doi.org/10.1016/j.envpol.2004.04.015
  15. Karcher, W.(1988), "Spectral atlas of polycyclic aromatic compounds", The Netherlands, Vol. 2, pp. 20-24.
  16. Kanaly, R. A. and Harayama, S(2000), "Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria". Journal of Bacteriology, Vol. 182, No. 8, pp. 2059-2067. https://doi.org/10.1128/JB.182.8.2059-2067.2000
  17. Kim, Y. H. Kim, Y. B., Kim, K., Chang, K. I., Lyu, S. J., Cho, Y. K. and Teague, W. J(2006), "Seasonal variation of the Korea Strait Bottom Cold Water and its relation to the bottom current", Geophysical Research Letters, Vol. 33, pp. 1-5.
  18. Kim, K. R., Kim, S. H. and Hong, G. H(2012), " Remediation technologies for contaminated marine sediments", Journal of Korean Environmental Dredging Society, Vol. 2, No. 1, pp. 20-25.
  19. Korea coast guard(2008), "Korea Coast Guard 2008 White Paper", pp. 523.
  20. Lei, L., Khodadoust, A. P., Suidan, M. T. and Tabak, H. H(2005), " Biodegradation of sediment-bound PAHs in field-contaminated sediment", Water Research, Vol. 39, pp. 349-361. https://doi.org/10.1016/j.watres.2004.09.021
  21. Lovley, D. R., Roden, E. R., Phillips, E. J. P. and Woodward, J. C(1993), " Enzymatic iron and uranium reduction by sulfate-reducing bacteria", Marine Geology, Vol. 113, pp. 41-53. https://doi.org/10.1016/0025-3227(93)90148-O
  22. Luo, K., Yang, Q., Li, X. M., Yang, G., Liu, Y., Wang, D. B., Zheng, W. and Zeng, G. M(2012), "Hydrolysis kinetics in anaerobic digestion of waste activated sludge enhanced by ${\alpha}$-amylase", Biochemical Engineering Journal, Vol. 62, pp. 17-21. https://doi.org/10.1016/j.bej.2011.12.009
  23. Lovley, D. R. and Coates, D. J(1995), "Benzene Oxidation Coupled to Sulfate Reduction", Applied and Environmental Microbiology, Vol. 61, No. 3, pp. 953-958.
  24. Lu, X. Y., Li, B., Zhang, T. and Fang, H. H. P(2012), "Enhanced anoxic bioremediation of PAHscontaminated sediment", Bioresource Technology, Vol. 104, pp. 51-58. https://doi.org/10.1016/j.biortech.2011.10.011
  25. Mackay, D. and Callcott, D(1998) "Partitioning and physical chemical properties of PAHs. PAHs and Related Compounds", In The Handbook of Environmental Chemistry, Vol. 3, Part I, (ed. A.H. Neilson). Springer, Berlin, Heidelberg, pp. 325-346.
  26. Ministry of Oceans and Fisheries(2013), Official Test Criteria the Marine Environment.
  27. Nikolaou, K., Masclet, P. and Mouvier, G(1984), "Sources and chemical-reactivity of polynuclear aromatic hydrocarbons in the atmosphere-A critical-review". Science of the Total Environment, Vol. 32, No. 2, pp. 103-132. https://doi.org/10.1016/0048-9697(84)90125-6
  28. Nasr, I. N., Arief, M. H., Abdel-Aleem, A. H. Malhat, F. M(2010), "Polycyclic Aromatic Hydrocarbons (PAHs) in Aquatic Environment at El Menofiya Governorate, Egypt", Journal of Applied Sciences Research, Vol. 6, No. 1, pp. 13-21.
  29. Peterson, C. H., Rice, S. D., Short, J. W., Esler, D., Bodkin, J. L., Ballachey, B. E. and Irons, D. B(2003), "Long-term ecosystem response to the Exxon Valdez oil spill", Science, Vol. 302, pp. 2082-2086. https://doi.org/10.1126/science.1084282
  30. Perelo, L. W(2010), "Review: In situ and bioremediation of organic pollutants in aquatic sediments", Journal of Hazard Materrials, Vol. 177, No. 1-3, pp. 81-89. https://doi.org/10.1016/j.jhazmat.2009.12.090
  31. Qiu, Y. W., Zhang, G., Liu, G. Q., Guo, L. L., Li, X. D., Wai, O(2009), "Polycyclic aromatic hydrocarbons (PAHs) in the water column and sediment core of Deep Bay, South China", Estuarine, Coastal and Shelf Science, Vol. 83, No. 1, pp. 60-66. https://doi.org/10.1016/j.ecss.2009.03.018
  32. Rabus, R. and Widdel, F(1996) "Utilization of Alkylbenzenes during Anaerobic Growth of Pure Cultures of Denitrifying Bacteria on Crude Oil", Applied and Environmental Microbiologh, Vol. 62, No. 4, pp. 1238-1241.
  33. Reimers, C. E., Ruttenberg, K. C., Canfield, D. E., Christiansen, M. B. and Martin, J. B(1996), "Porewater pH and authigenic phases formed in the uppermost sediments of the Santa Barbara Basin", Geochimica et Cosmochimica Acta, Vol. 60, No. 21, pp. 4037-4057. https://doi.org/10.1016/S0016-7037(96)00231-1
  34. Rothermich, M. M., Hayes, L. A. and Lovley, D. R(2002), "Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleumcontaminated harbor sediment", Environmental Science Technology, Vol. 36, No. 22, pp. 4811-4817. https://doi.org/10.1021/es0200241
  35. Song, Y. C., Subha, B., Woo, J. H., Lim, H. J. and Senthilkumar, P(2014), "Surface Modification of Sediment with Surfactant for Capping Material on Contaminated Coastal Sediment", Water Air Soil Pollution. Vol. 225, pp. 2066-2076. https://doi.org/10.1007/s11270-014-2066-y
  36. Song, Y. C., Senthilkumar, P. and Woo, J. H(2013), "Effect of biostimulation on growth of indigenous microorganisms in contaminated marine sediments", The Korean Society for Marine Environment & Energy, pp. 49-50.
  37. Shin, H. S. and Song, Y. C(1995), "A model for evaluation of anaerobic degradation characteristics of organic waste: Focusing on kinetics, rate-limiting step", Environmental Technology, Vol. 16, No. 8, pp. 775-784. https://doi.org/10.1080/09593331608616316
  38. Song, Y. C., Feng, q. and Ahn, Y(2016), "Performance of the bio-electrochemical anaerobic digestion of sewage sludge at different hydraulic retention times", Energy & fuels, Vol. 30, pp. 352-359. https://doi.org/10.1021/acs.energyfuels.5b02003
  39. Subha, B., Song, Y. C. and Woo, J. H(2014), "An experimental design approach to optimize the effectiveness of biostimulant ball in coastal sediment", International conference on emerging trends in computer and image processing(ICETCIP, 2014) Dec. 15-16, Pattaya(Thailand), pp. 62-65.
  40. US EPA(1987), "Quality Criteria for Water 1986. EPA 440/5-86-001", US Environmental Protection Agency, Washongton DC.
  41. Woo, J. H., Subha B. and Song, Y. C(2015), "Effect of the Applied Biostimulant Depth on the Bioremediation of Contaminated Coastal Sediment", Journal of Navigation and Port Research, Vol. 39, No. 4, pp. 345-351. https://doi.org/10.5394/KINPR.2015.39.4.345
  42. Woo, J. H., Subha B. and Song, Y. C(2016), "Application of biostimulant ball depth effect in contaminated coastal sediment to evaluate the PAHs degradation and enhance the bacterial community using pyrosequencing", 8th International Conference on Marine Pollution and Ecotoxicology, June 20-24, Hong Kong, p. 69.
  43. Woo, J. H., Song, Y. C. and Senthilkumar, P(2014), "Study on the elution of biostimulant for in-situ bioremediation of contaminated coastal sediment", Journal of Navigation and Port Research, Vol. 38, No. 3, pp. 239-246. https://doi.org/10.5394/KINPR.2014.38.3.239
  44. Wang, Y. and Cappellen, P. V(1996), "A multicomponent reactive transport model of early diagenesis:Application to redox cycling in coastal marine sediments", Geochimica et Cosmochimica Acta, Vol. 60, No. 16, pp. 2993-3014. https://doi.org/10.1016/0016-7037(96)00140-8
  45. Walworth, J., Pond, A., Snape, I., Rayner, J., Ferguson, S. and Harvey, P(2007), "Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil", Cold Regions Science and Technology, Vol. 48, pp. 84-91. https://doi.org/10.1016/j.coldregions.2006.07.001
  46. Yuan, S. Y. and Chang, B. V(2007), "Anaerobic degradation of five polycyclic aromatic hydrocarbons from river sediment in Taiwan", Journal of Environmental Science and Health Part B=Pesticides Food Contaminants and Agricultural Wastes, Vol. 42, No. 1, pp. 63-69. https://doi.org/10.1080/03601230601020860
  47. Zeng, Y., Hong, P. K. A. and Wavrek, D. A(2000), "Integrated chemical-biological treatment of benzo[a]pyrene", Environmental Science & Technology, Vol. 34, No. 5, pp. 854-862. https://doi.org/10.1021/es990817w