DOI QR코드

DOI QR Code

Comparison of Construction Costs for Bridge Foundation with Optimization of Steel and PHC Embedded Piles

강관 및 PHC 매입말뚝의 최적화에 따른 교량기초의 공사비 비교

  • Yun, Jung-Mann (Dept. of Construction Information System, SHIN ANSAN University) ;
  • Yea, Geu-Guwen (Technology Research Division, SAMBU Construction Co.) ;
  • Kim, Hong-Yeon (Technology Research Division, SAMBU Construction Co.) ;
  • Kim, Dong-Min (Geotechnical Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Soo-Lo (Geotechnics & Recycling Technology Division, Institute of Mine Reclamation Technology)
  • Received : 2016.10.20
  • Accepted : 2016.12.14
  • Published : 2016.12.30

Abstract

In this study, execution costs of the foundation system are compared with PHC and steel pile in the same soil layers and load condition. Steel piles installed on the thin weathered rock are reduced as 12.5% in comparison with the number of PHC piles. Steel piles installed on the soft rock through weathered rock with 1.7m of thickness reduce the number of piles as 35.7% (STK 400) and 46.4% (STK 490), respectively, in comparison with PHC piles installed on the weathered rock. Also, they reduce the number of piles as 26.5% (STK 400) and 38.8% (STK 490), respectively, in comparison with steel piles (STK 400) installed on the weathered rock. When the thickness of footings is constant, steel piles installed on the soft rock may reduce the area of footings up to 12.2% (STK 400) and 45.4% (STK 490), respectively, in comparison with PHC piles installed on the weathered rock. Total cost of foundation system installed on the soft rock with steel piles (STK 400) increases as 12%, whereas in case of replaced with steel piles (STK 490), it reduces as 16% in comparison with PHC piles installed on the weathered rock. This is because the cost reduction due to the number of piles and footing area is more effective despite high cost of steel piles (STK 490). When the thickness of weathered rock is less than 5m, installing steel piles (STK 490) on the soft rock through it is more economic in comparison with installing PHC piles on the weathered rock.

본 연구에서는 동일한 지층 및 하중조건에서 PHC말뚝을 강관말뚝으로 대체할 경우 말뚝 본수의 변화와 푸팅을 포함한 공사비를 비교하였다. 얕은 풍화암층에 강관말뚝을 지지할 경우 PHC말뚝과 비교하여 12.5%의 본수가 절감되었다. 실 사례로부터 가정된 1.7m 두께의 풍화암층을 통과하여 깊은기초를 연암층에 지지할 경우 일반 및 고강도 강관말뚝은 각각 풍화암층에 설치한 PHC 말뚝 대비 35.7% 및 46.4%, 강관말뚝 대비 26.5% 및 38.8%의 본수가 절감되는 효과가 있는 것으로 나타났다. 푸팅두께가 일정하다고 가정할 경우 풍화암층을 관통하여 연암층에 설치된 일반 및 고강도 강관말뚝은 풍화암층에 설치된 PHC말뚝 대비 각각 12.2% 및 45.4%까지 푸팅의 소요면적을 절감할 수 있는 것으로 나타났다. 이러한 결과를 가지고 말뚝시스템의 전체 공사비를 산정한 결과 풍화암에 지지된 PHC말뚝과 비교할 때 연암층에 설치된 일반 강관말뚝의 비용은 12% 높게 산정된 반면, 이를 고강도 강관말뚝으로 대체하였을 경우는 오히려 16% 절감효과가 있는 것으로 나타났다. 이는 고강도 강관말뚝의 재료비가 상대적으로 높으나 말뚝 본수 및 푸팅면적의 감소로 인한 비용 절감효과가 더 크기 때문이다. 풍화암층 두께를 변화시키며 해석하여 말뚝시스템의 공사비를 비교한 결과 풍화암층 두께가 5m 이하인 조건에서는 PHC말뚝을 풍화암층에 지지하는 것보다 이를 관통하여 연암층에 고강도 강관말뚝을 지지하는 것이 전체 공사비 측면에서 유리한 것으로 나타났다.

Keywords

References

  1. Korea Geotechnical Society (2008), Research report on the present analysis of technology applied to steel pile, Report No. KGS09-007, pp.3-129 (in Korean).
  2. Korea Geotechnical Society (2015), Code requirement for structural foundation design, CIR Co., Seoul, p.225 (in Korean).
  3. Korea Rail Network Authority (2015a), Working design report on ${\bigcirc}{\bigcirc}{\sim}{\bigcirc}{\bigcirc}$ Railway construction (in Korean).
  4. Korea Rail Network Authority (2015b), Working design report on ${\bigcirc}{\bigcirc}{\sim}{\bigcirc}{\bigcirc}$ double track line construction (in Korean).
  5. Na, S. M., Yeo, G. Y. and An, D. W (2010), "Present and future of technology development in the field of pile foundation using high performance steel pipe", Seminar on design & construction for improved steel pile, KGS, pp.2-9 (in Korean).
  6. O'Neill, M. W. and Murchison, J. M. (1983), An Evaluation of p-y Relationship in Sands, A report to the American Petroleum Institute, PRAC 82-41-1, University of Houston, Texas.
  7. Reese, L. C., Cox, W. R. and Koop, F. D. (1974), "Analysis of laterally loaded piles in sand", Proceedings of the VI Annual Offshore Technology Conference, Houston, pp.473-485.
  8. Reese, L. C., Wang, S. T., Arrellaga, J. A., Hendrix, J. and Vasquez, L. (2010), COMPUTER PROGRAM GROUP Version 8.0, A Program for the Analysis of a Group of Piles Subjected to Vertical and Lateral Loading (User's Manual), Ensoft, Inc., Austin, Texas.