참고문헌
- ACI Committee 318. (2008). Building Code Requirement for Structural Concrete and Commentary(ACI 318-08), American Concrete Institute, 430.
- ACI Committee 544. (1999). Design Consideration for Steel Fiber Reinforced Concrete, American Concrete Institute.
- ASTM C 1609. (2013). Standard Test Method for Flexural Performance of Fiber-reinforced Concrete-using Beam with Third-point Loading, American Society for Testing Materials.
- Cho, C.G., Park, C.H., Kim, H.J. (2011). Evaluation of shear strength of amorphous steel fiber-reinforced cementitious mortar, Journal of Architecture Institute of Korea, 31(2), 329-330 [in Korean].
- Choi, K.K., Truong, G.T., Choi, S.J. (2015). "Restrained shrinkage cracking of amorphous metallic fibre-reinforced concrete," Proceedings of the ICE-Structures and Buildings, 168(12), 902-914.
- fib. (2010). fib Model Code 2010-First Complete Draft, International Federation for Structural Concrete, 1, 220-231.
- Hameed, R., Turatsinze, A., Duprat, F., Sellier, A. (2010). Study on the flexural properties of metallic-hybrid-fiber-reinforced concrete, Maejo International Journal of Science and Technology, 4(2), 169-184.
- Jeon, J.K., Kim, W.S., Yoon, J.H., Jeon, C.K. (2014). An experimental study on the flexural characteristics of polyamide fiber reinforced concrete, Journal of the Korea Concrete Institute, 26(1), 379-380 [in Korean].
- Karl, K.W., Lee, D.H., Hwang, H.H., Kim, K.S., Choi, I.S. (2011). Revision on material strength of steel fiber-reinforced concrete, International Journal of Concrete Structures and Materials, Korea Concrete Institute, 5(2), 87-96. https://doi.org/10.4334/IJCSM.2011.5.2.87
- Kim, H.S., Dinh, N.H., Choi, K.K. (2016). Mechanical properties and modeling of amorphous metallic fiber-reinforced concrete in compression, International Journal of Concrete Structures and Materials, 10(2), 221-236. https://doi.org/10.1007/s40069-016-0144-9
- Kim, W.S., Jung, D.H., Cho, I.M. (2012). Flexural strength characteristics of PVA fiber reinforced clayey soil-cement mixture, Journal of the Korean Society of Hazard Mitigation, 12(5), 101-111 [in Korean]. https://doi.org/10.9798/KOSHAM.2012.12.5.101
- Kim, Y.I., L, Y.K., Kim, M.S. (2008). Influence of steel fiber volume ratios on workability and strength characteristics of steel fiber reinforced high-strength concrete, Journal of the Korea Institute of Building Construction, 8(3), 75-83 [in Korean].
- KS F 2402. (2012). Method of Test for Slump of Concrete, Korean Industrial Standards [in Korean].
- KS F 2403. (2014). Standard Test Method for Making and Curing Concrete Specimens, Korean Industrial Standards [in Korean].
- KS F 2405. (2010). Standard Test Method for Compressive Strength of Concrete, Korean Industrial Standards [in Korean].
- KS F 2408. (2010). Standard Test Method for Flexural Strength of Concrete, Korean Industrial Standards [in Korean].
- KS F 2566. (2014). Standard Test Method for Flexural Performance of Fiber Reinforced Concrete, Korean Industrial Standards [in Korean].
- KS L 5201. (2010). Portland Cement, Korean Industrial Standards [in Korean].
- Lawer, J.S., Zampini, D., Shah, S.P. (2000). Permeability of cracked hybrid fiber-reinforced mortar under load, ACI Material Journal, 99(4), 379-385.
- Qian, C.X. Stroevenb, P. (2000). Development of hybrid polypropylene-steel fibre-reinforced concrete, Cement and Concrete Research, 30(1), 63-69. https://doi.org/10.1016/S0008-8846(99)00202-1
- Song, H.S. (2011). Optimum combination of carbon and glass fiber composite to obtain the hybrid effect, Journal of the Korea Concrete Institute, 23(4), 405-411 [in Korean]. https://doi.org/10.4334/JKCI.2011.23.4.405
- Yang, K.H. (2010). Slump and mechanical properties of hybrid steel-pva fiber reinforced concrete, Journal of the Korea Concrete Institute, 22(5), 651-658 [in Korean]. https://doi.org/10.4334/JKCI.2010.22.5.651
- Yao, U., Li, J., Wu, K. (2003). Mechanical properties of hybrid fiber-reinforced concrete at low fiber fraction, Cement and Concrete Research, 33(1), 27-30. https://doi.org/10.1016/S0008-8846(02)00913-4